VIVEKANANDHA

COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2008 Certified Institution, Affiliated to Periyar University, Salem, (Approved by AICTE and Re-Accredited with 'A' Grade by NAAC, Recognized Under 2(f) and 12(b) of UGC Act, 1956). Elayampalayam, Tiruchengode - 637 205, Namakkal Dt., Tamilnadu, INDIA.

DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE (M.Sc.)

CHEMISTRY

M.Sc., CHEMISTRY REGULATIONS AND SYLLABUS

[FOR CANDIDATES ADMITTED FROM 2020-21 ONWARDS UNDER AUTONOMOUS – OBE & CBCS PATTERN]

ANGAMMAL EDUCATIONAL TRUST

Elayampalayam – 637 205, Tiruchengode Tk., Namakkal Dt., Tamil Nadu.
Veerachipalayam - 637 303, Sankari Tk., Salem Dt., Tamil Nadu.
Tel. : 04288 234670 (4 lines), Mobile : 64437 34670, Fax : 04288 234894
Website : www.vivekanandha.ac.in email : vivekaadmission@gmail.com

About the College

Vivekanandha College of Arts and Sciences for Women (Autonomous) was established and hailed into Women's Educational Service in the Year 1995. Angammal Educational Trust Chaired by the great Educationalist 'Vidhya Rathna' Prof. Dr. M. KARUNANITHI, B.Pharm., M.S., Ph.D., D.Litt., sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of Tiruchengode-Namakkal Main Road at Elayampalayam, 6 kms away from Tiruchengode. This is biggest women's college in India with more than 7500 girl students and more than 18 departments. The strength of the college was just 65 at the time of its establishment. With the dedication, work, sacrifice and long vision of the chairman, this institution has grown into a Himalaya stage. As a result of which UGC, New Delhi, awarded 2f and 12b, extended Autonomous status for second cycle. The National Assessment and Accreditation Council reaccredited with grade 'A' for its successful performance.

As an Autonomous Institution, academic professionals of the college framed Curriculum and Syllabi in consultation with all its stakeholders to cater the needs of the young women to fulfill the women empowerment and present Industrial needs to the local benefits. The students are empowering with confidence and required skills to face the society.

Quality Policy

To provide professional training by establishing a high level center of learning that provides quality education at par with the international standards and Provide excellence education with well equipped infrastructure to all the rural women.

Our Vision

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research and technological service to the nation.

Our Mission

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social and economic growth of women students.

S. No.	TOPICS	P. No.
	REGULATIONS	1
1	SCOPE OF THE COURSE	IV
2	SALIENT FEATURES	IV
3	OBJECTIVES	V
4	ELIGIBILITY FOR ADMISSION	V
5	DURATION OF THE COURSE	V
6	ASSESSMENT	VI
7	PASSING MINIMUM	VIII
8	CLASSIFICATION OF SUCCESSFUL CANDIDATES	VIII
9	ELIGIBILITY FOR AWARD OF THE DEGREE	VIII
10	PROCEDURE IN THE EVENT OF FAILURE	IX
11	COMMENCEMENT OF THESE REGULATIONS	IX
12	COURSE PATTERN	Х
13	BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN	XII
	SYLLABUS FOR YEAR I (Semester I)	
	COURSE PATTERN WITH PAPERS	
1	Core I – Concepts of Organic Chemistry and Stereochemistry	1
2	Core II – Transition metal and Nuclear Chemistry	5
3	Core III – Group theory, Kinetics and Surface Chemistry	9
4	Elective	30
	SYLLABUS FOR YEAR I (Semester II)	
	COURSE PATTERN WITH PAPERS	
1	Core IV – Organic Reaction Mechanism	13
2	Core V – Chemical Bonding and Coordination Chemistry	17
3	Elective	38
4	Core Practical I – Organic Chemistry Practical-I	21
5	Core Practical II – Inorganic Chemistry Practical-I	24
6	Core Practical III – Physical Chemistry Practical-I	27
	SYLLABUS FOR YEAR II (Semester III)	
	COURSE PATTERN WITH PAPERS	
1	Core V – Natural Products, Pericyclic reactions and Retro synthesis	77
2	Core IV – Organometallic, Solid state, Spectroscopy and Bio-	81
	inorganic Chemistry	
3	Core VII – Quantum Chemistry and Thermodynamics	85
4	EDC	
5	Human Rights	
	SYLLABUS FOR YEAR II (Semester IV)	
1	COURSE PATTERN WITH PAPERS	07
1	Core IX – Physical methods in Chemistry	97
2	Elective	101
3	Core Practical-IV – Organic Chemistry Practical-II	109
4	Core Practical V – Inorganic Chemistry-Practical-II	112
5	Core Practical VI – Physical Chemistry-Practical-II	115
6	Project Work – Project	118

REGULATIONS

I. SCOPE OF THE COURSE

The uniqueness of the M.Sc. (Chemistry) program is its content and topic coverage, the teaching methodology and the faculty. The program expects a serious commitment of the students to take up challenging study schedules and assignments. The course involves a blend of theoretical education and practical training which run concurrently for a period of three years and equips a student with knowledge, ability, skills and other qualities.

The teaching methodologies include classroom lectures, industrial visits, orientation and internship. The new syllabus may help the students to understand the newer aspects of chemistry and apply the same to the real life situations. Thus the students turn more relevant and resourceful to the society. It may enable the young minds think differently and forms a link between old ideas and new ideas in chemistry and gives comprehensive approaches to the very learning process and the learners. To have academic flexibility we have chosen and implemented Choice Based Credit System (CBCS) in our syllabus. To enhance the quality of students from 2018-2019, we have implemented Outcome Based Education (OBE) education system for I PG students. The OBE pattern will be extended for the II PG students in forth coming years.

II. SALIENT FEATURES

- > Course is specially designed for a higher level career placement.
- Special guest lecturers from Industrialists will be arranged.
- Exclusively caters to students interested in pursuing higher studies.
- > Special industry orientations and training are parts of the degree

course.

Project work is included in the syllabus to enhance conceptual, analytical and deductive skills.

III. OBJECTIVES

The new syllabus throws light on the recent and emerging areas of chemistry.

- ✓ Enable the students to understand chemistry and make them more relevant to the society.
- ✓ Develop the analytical ability in students so that they prepared themselves in solving problems.
- \checkmark Help the students to learn practical skills in a better way.
- ✓ Inculcate research aptitude in students.
- \checkmark Enable the students to go to higher levels of learning chemistry.
- \checkmark Improve the employability of the students.
- ✓ To inspire the students to apply their knowledge gained for the development of society in general.

IV. ELIGIBILITY FOR ADMISSION

Candidates seeking admission to the first year PG Degree course (M.Sc. chemistry) shall be required to have passed B.Sc., (Chemistry) B.Sc., (Applied chemistry) and B.Sc., (Industrial chemistry).

V. DURATION OF THE COURSE

> The course shall extend over a period of two academic years consisting of four semesters. Each academic year will be divided into two semesters. The first semester will consist of the period from July to November and the second semester from December to April.

- > The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women with the approval of Periyar University.
- Each subject will have 5 or 4 hours of lecture per week apart from practical training at the end of academic year.

VI. ASSESSMENT

Assessment of the students would be made through Continuous Internal Assessment (CIA) and External Assessment (EA) for passing each subject both theory and practical papers.

A candidate would be permitted to appear for the External Examination only on earning 75 % of attendance and only when her conduct has been satisfactory. It shall be open to grant exemption to a candidate for valid reasons subject to conditions prescribed.

A. CONTINUOUS INTERNAL ASSESSMENT (CIA)

The performance of the students will be assessed continuously and the Internal Assessment Marks will be as under:

1. Average of two CIA test and Model exam - 10 Marks

2. Seminar		- 05 Marks
3. Assignment		- 05 Marks
3. Attendance		- 05 Marks
	Total	=25 Marks

S. No.	Derecretere	Ма	rks
S. No.	Percentage	Theory	Practical
1	76-80	1	2
2	81-85	2	4
3	86-90	3	6
4	91-95	4	8
5	96-100	5	10

Distribution of attendance mark

B. EXTERNAL ASSESSMENT (EA)

The performance of the students would be assessed by examination at the end of each semester with a written test for theory for three hours and practical examination at the end of even semesters for six hours. Question papers would be set by the selected external examiners in the prescribed format and valuated by the external examiners with the help of the teacher concern.

The pattern of assessment is as follows:

Section	Activity	Marks (75)	Activity	Marks (60)
А	One mark (20)	20	Record work	5
В	Five marks (Either or)	25	Viva Voce	5
С	Ten marks (3/5)	30	Spotter	20
			Major(Performance)	5
			Major (Result)	5
			Major (Writeup)	10
			Minor(Performance)	2
			Minor (Result)	3
			Minor (Writeup)	5
	Total	75	Total	60

Distribution	Of Final	Assesment	Marks	(Theory-75	, Practicals-60	١
Distribution	Of Fillar	Assesment	mains	(Incory-75	, 1 1acticals-00	,

VII. PASSING MINIMUM

INTERNAL

There is no passing minimum for CIA

EXTERNAL

In the University Examinations, the passing minimum shall be 50 % out of 75 Marks for theory (38 marks) and 50% out of 60 marks for practical (30 Marks).

VIII. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Successful candidates passing the examination of Core Courses and elective courses, and securing marks

- a) 75 % and above shall be declared to have passed the examination in first class with Distinction provided they pass all the examinations prescribed for the programme at first appearance itself.
- b) 60% and above shall be declared to have passed the examinations in first class without Distinction.
- c) 50% and above but below 60% shall be declared to have passed the examinations in second class.
- d) Candidates who pass all the examinations prescribed for the programme at the first appearance itself and within a period of two consecutive academic years from the year of admission only will be eligible for University rank.

IX. ELIGIBILITY FOR AWARD OF THE DEGREE

A candidate shall be eligible for the award of the degree only if she has undergone the above degree for a period of not less than two academic years comprising of four semesters and passed the examinations VIII prescribed and fulfiled such conditions have been prescribed.

X. PROCEDURE IN THE EVENT OF FAILURE

If a candidate fails in a particular subject, she may reappear for the end semester examination in the concerned subject in subsequent semesters and shall pass the examination.

XI. COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2020-21 (i.e.,) for the students who are to be admitted to the first year of the course during the academic year 2020-21 and thereafter.

XII. COURSE PATTERN (OBE)

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN

(AUTONOMOUS)

SYLLABUS FRAME WORK

Subject & Code	Inst. Hour/Week	Credit	Exam Hours	Internal	External	Total Marks	Subjects	Inst. Hour/Week	Credit	Exam Hours	Internal	External	Total Marks
					1	YE	CAR I			1			
	Sen	nester	I					Sei	neste	r II			
Concepts of Organic Chemistry and Stereochemistry & 20P1CH01	5	5	3	25	75	100	Organic Reaction Mechanism & 20P2CH04	5	5	3	25	75	100
Transition metal and Nuclear Chemistry & 20P1CH02	5	5	3	25	75	100	Chemical Bonding and Coordination Chemistry & 20P2CH05	5	5	3	25	75	100
Group theory, Kinetics and Surface Chemistry & 20P1CH03	5	5	3	25	75	100	Elective Course	5	4	3	25	75	100
Elective Course	4	4	3	25	75	100	Organic Chemistry Practical-I & 20P2CHP01	5	4	6	40	60	100
Organic Chemistry Practical-I & 20P2CHP01	4	-	-	-	-	-	Inorganic Chemistry- Practical-I & 20P2CHP02	5	4	6	40	60	100
Inorganic Chemistry- Practical-I & 20P2CHP02	4	-	-	-	-	-	Physical Chemistry- Practical I & 20P2CHP03	4	4	6	40	60	100
Physical Chemistry- Practical-I & 20P2CHP03	3	-	-	-	-	-	Library	1	-	-	-	-	-
Library		-	-	-	-	-		-	-	-	-	-	-
Total	30	19	12	100	300	400	Total	30	26	27	195	405	600
			I YE	AR TO	DTAL	1			45	39	295	705	1000

						YE	AR II						
	Sem	ester	III					Ser	nester	· IV			
Natural Products, Pericyclic reactions and Retro synthesis & 20P3CH06	4	5	3	25	75	100	Physical methods in Chemistry & 20P4CH09	5	5	3	25	75	100
Organometallic, Solid state, Spectroscopy and Bio-inorganic Chemistry & 20P3CH07	4	5	3	25	75	100	Elective Course	4	4	3	25	75	100
Quantum Chemistry and Thermodynamics & 20P3CH08	4	5	3	25	75	100	Organic Chemistry Practical-II & 20P4CHP04	5	4	6	40	60	100
NMEC	4	4	3	25	75	100	Inorganic Chemistry- Practical-II & 20P4CHP05	5	4	6	40	60	100
Organic Chemistry Practical-II & 20P4CHP04	4	-	-	-	-	-	Physical Chemistry- Practical-II & 20P4CHP06	4	4	6	40	60	100
Inorganic Chemistry- Practical-II & 20P4CHP05	4	-	-	-	-	-	Library	1	-	-	-	-	-
Physical Chemistry- Practical-II & 20P4CHP06	4	-	-	-	-	-	Project	6	4	-	40	60	100
Human Rights & 20P3HR01	2	1	3	25	75	100							
Total	30	20	15	125	375	500	Total	30	25	24	210	390	600
							II YEAR TO	DTAL	45	39	335	765	1100
	тС	TAL	CREDI	T FOR	R THE	COUR	SE		90	68	630	1470	2100

ELECTIVE COURSES

Semester	Categor	Course code	Course title	Contact hrs	Cre	dits
Semester	y Course code Course title		per week	Min	Max	
т	Elective	20P1CHE01	Nanoscience and Nanotechnology	4	4	4
1	Elective	20P1CHE02	Instrumental Methods of Analysis	4	4	4
II	Elective	20P2CHE03	Electrochemistry and Photochemistry	4	4	4
11	Elective	20P2CHE04	Organic Spectroscopy	4	4	4
III	Elective	20P3CHED01	Applied Polymer Chemistry	4	4	4
111	Elective	20P3CHED02	Industrial Chemistry	4	4	4

	Elective	20P4CHE05	Environmental Chemistry	4	4	4
IV	Elective	20P4CHE06	Corrosion Principles, Protection and Monitoring	4	4	4

*EXTRA CREDIT EARNING PROVISION

Semester	Course code	Course title	Credits
Ι	20P1CHEC1	Online Course	1
Ι	20P1CHEC2	Water Quality Analysis (Self Study Paper)	1
Ι	20P1CHEC3	Dairy Chemistry (Self Study Paper)	1
II	20P2CHEC4	Online Course	1
II	20P2CHEC5	Green Chemistry (Self Study Paper)	1
II	20P2CHEC6	Research Methodology (Self Study Paper)	1
II	20P1CHEC7	Online Course	1

* Not considered for grand total and CGPA

XIII . BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory: 75 Marks

(i)Test - I & II and ESE:

Knowledge Level	Section			Total
K1	A (One Mark)	20 x 01=20	Objective	
K2	B (Either or pattern)	05 x 05=25	Descriptive	75
K3, K4 & K5	C (Three out of five)	03 x 10=30	Detailed	

Programme Outcomes

	Capable of demonstrating comprehensive knowledge and
PO 1	understanding of one or more disciplines that form a part of an
	undergraduate programme of study.
PO 2	Ability to express thoughts and ideas effectively in writing and
PO 2	orally Communicate with others using appropriate media

	confidently share ones views and express herself /himself.
	connuclity share ones views and express nersen / minsen.
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications
PO 4	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non familiar problems rather than replicate curriculum content knowledge and apply ones learning to real life situations
PO 5	Ability to evaluate the reliability and relevance of evidence identify logical flaws and holes in the arguments of others analyse and synthesise data from a variety of sources draw valid Conclusions.
PO 6	A sense of inquiry and capability for asking relevant appropriate questions problematising synthesising and articulating ability to recognise cause and effect relationships define problems formulate hypotheses.
PO 7	Ability to work effectively and respectfully with diverse teams facilitate cooperative or coordinated effort on the part of a group and act together as a group in the interests of work efficiently as a member of a team.
PO 8	Ability to analyse interpret and draw conclusions from quantitative qualitative data and critically evaluate ideas, evidence and experiences from an open minded and reasoned perspective.
PO 9	Critical sensibility to lived experiences with self awareness and reflexivity of both self and society.
PO 10	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data.
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
PO 13	Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.
PO 14	Capability for mapping out the tasks of a team or an organization and setting direction formulating an inspiring vision building a

	team who can help achieve the vision motivating.
	Ability to acquire knowledge and skills including learning how to
PO 15	learn that are necessary for participating in learning activities
	throughout life through self paced.

Programme Specific Outcomes

PSO1: To foster a theoretical and practical knowledge on chemistry and its applications and to make responsible citizenships.

PS02: To deliver core and advanced courses on the applied chemistry.

PSO3: To deepen learner-capacity for productive scientific thinking both within and beyond the classroom through extensive programmes.

PSO4: To cultivate problem solving skills through chemical knowledge to address environmental problems, and to complement and reflect on social needs.

PS05: To develop innovative thinking, generate creative ideas towards scientific knowledge through well-structured seminars and assignments.

PS06: To apply modern methods of analysis to chemical systems in a laboratory setting.

NONEW EMPOWERHENT	VIVEKANANI	DHA COLLEGE OF A (AUTO N Elayampalayam, Ti	IOMO	DUS)		DR WOMI		ISO 80012008 TO/TOWNING CENTRALD
Programme	M.Sc	Programme Code			P	CH	Regulati	ons	2020-2022
Department	Cł	emistry				Semester			1
Course Code	Course Name			eriod We	ek	Credit	Maximu		
20P1CH01	CORE PAPER Concepts of Or Stereochemistry	ganic Chemistry and	L 5	Т	Р	C 05	CA 25	ESI 75	
Course Objectives		To enable the students to learn about the chemistry of organic compounds and to enrich the knowledge in various organic reactions.							
POs		PROG	RAM	ME	C OI	UTCOME			
PO 1		strating comprehensive kindergraduate programme of			und u	understanding o	f one or m	ore dis	sciplines that
PO 2	form a part of an undergraduate programme of study. Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.								
PO 3		y analytic thought to a b the basis of empirical evide							ce arguments
PO 4		blate from what one has le ems rather than replicate c							
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	m a v	varie	ty of sources dra	aw valid Co	nclusio	ons.
PO 6	articulating ability	and capability for asking to recognise cause and effe	ect rela	ations	ships	define problem	is formulate	hypot	heses.
PO 7	•	fectively and respectfully up and act together as a gr					•		
PO 8	Ability to analyse interpret and draw conclusions from quantitative qualitative data and critically evaluate ideas, evidence and experiences from an open minded and reasoned perspective.								
PO 9		to lived experiences with s							
PO 10	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data.								
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.								
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.								
PO 13	Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.								
PO 14	inspiring vision bu	pping out the tasks of a t ilding a team who can help	o achie	ve th	e vis	sion motivating.			-
PO 15	·	knowledge and skills inclues throughout life through a			ng h	ow to learn that	are necessa	ary for	participating

COs	COURSE OUTCOME
CO 1	Students will be known to name the organic compounds systematically and they will be able to assess the aromaticity of any organic compounds.
CO 2	Students can able to understand the formation of intermediates in organic reactions and the students can able to determine the mechanism of new organic reactions.
CO 3	Students can able to understand the nucleophillic substitution reactions.
CO 4	Knowledge of students will be enriched with stereochemistry and various types of substitution reactions which will help the students to carry out the research in future.
CO 5	Students will systematically name the natural products and will study their stereochemistry.
Pre-requisites	

	KNOWLEDGE LEVELS														
1.R			-	ndersta	CC) / PO /	KL N	lappir	ıg					ing	
Cos		3/2/11	ndicat	es the st	t rengti KLs	1 OI COI	relatio	on, 3-s	trong, POs		1um, 1	-weak) KI	6	
	•				KL8				PO				2		
CO	1				4				PO				1		
									PO				5		
CO	2				1				PO				5		
									PO				4		
CO	3				3				PO				6		
					_				PO				2		
CO	4				5			PO 8				4			
CO	F		6				PO 9				1				
CO	5						PO 10				3				
PSO	le.		KLs				PO 11				3				
			-				PO 12				2				
PSO					3			PO 13				1			
PSO					4			PO 14				2			
PSO	3				1		0.1	PO 15 1 Mapping							
	(.	3/2/1 i	ndicat	es the st			-		trong,	2-med	ium, 1	-weak))		
CO						Prog	gramn	ne Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
C01	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO5	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
Cos	Programme Specific Outcome (POs)								
Cos	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

Course Assessment Methods			
Direct			
1. Continuous Assessment Test I, II & Model			
2. Assignment			
3. End Semester Examinations			
Indirect			
1. Course End Delivery			

	Content of the Syllabus						
	Nomenclature and Aromaticity	Periods	15				
Unit - I	 Unit - I Unit - I Nomenclature of aromatic heterocyclic compounds (containing one or two heter atoms) – Nomenclature of alicyclic, bicyclic and tricyclic compounds. Concept of Aromaticity – aromatic character of benzene and heterocyclic compounds – benzene pyrole and pyridine. Effect of aromaticity on bond length, resonance energy an induced ring currents. Huckels rule – concept of homoaromaticity and antiaromaticity Nonbenzenoid aromatic compounds – cyclopropeniumcation, cyclopentadienyl anior ferrocence, diazocyclopentadiene, sydnones, azoulene, tropolone ion, tropylium ion an annulenes – their structures and aromaticity. 						
	Reactive intermediates and methods	Periods	15				
Unit - II	Structure, Stability, Generation and Reactions of Ca Nonclassical), carbanions, carbenes, nitrenes and free rac types and reactions. Enamines - Generation and reactions. To control – methods of determination of reaction mechanic determination of the presence of intermediate, isolation, de experiments – isotopic labeling - isotopic effect – stereo c evidence. Microscopic reversibility – Hammond Postul relationship – Hammette equation – Taft equation - La deviations.	licals.Ylides – Thermodynamic isms – produc tection, trappin hemical eviden ate - Linear	Generation, c and kinetic t analysis – ng – cross of nce – kinetic free energy				
Unit - III	Nucleophilic substitution reactions Aliphatic Nucleophilic substitution reactions: SN1, SN2, affecting nucleophiclic substitution - Neighbouring grou nucleophilies and ambient substrates. Substitution at vinyl bridge head carbon.Von Braun reaction, Claisen condensati	p participation carbon, allylic	n, Ambident carbon and				

	Aromatic Nucleophilic substitution reactions: SN1, SN2 and SNAR Typhical reactions such as Gattermann reaction, Gattermann Koch reaction Tiemann reaction, Koble reaction. Ziegler alkylation – Chichibabin rea- substitutions.	on, Reimer –
	Electrophilic Substitution reactions Periods	15
Unit - IV	Aromatic Electrophilic substitution reactions: Introduction – Me Electrophilic substitutions with examples. Orientation and reactivity – substitution on monosubstituted and disubstituted benzenes. Aliphatic substitution reactions: SE1 and SE2 reactions – Mechanism and reactiv involving the migration of double bond – Halogenation of carbonyl compo Enamine reactions – decarboxylation of aliphatic acids. Friedel craft olifinic carbon.	Electrophilic Electrophilic ity. Reaction unds – Stork
	Stereochemistry Periods	15
Unit - V	Principles of symmetry- concept of chirality, Molecualr symmetry a Newmann, Sawhorse, Fischer and Wedge representations and interconver of molecules exhibiting optical activity. Configurational nomenclature of cyclic molecules: cis-trans, E & Z, D & L, (+ or –), d & l, R & S, eryth syn&anti. Stereospecific, Chemo, Regio, Enantio and stereo - selec tranformations, asymmetric synthesis – Crams rule. Conformational an disubstitutd ethane derivatives – disubstituted cyclohexanes and their ste features. Conformation and reactivity of substituted cyclohexanols cyclohexanones (reduction) and conformations of heterocycles.	sions. Types f acyclic and ro and threo; ctive organic alysis – 1,2- ereochemical
	Total Periods	75

Text	Text Books				
1	Mukargee S.H. and Singh S.P., McMillan 1976.				
2	Raj K. Bansal, , Hill Publishing Company Ltd 2006.				
3	Ernest L. Eliel, Stereochemistry of Carbon Compounds, T.M.H Edition, 1975.				
Refer	References				
1	Finar I.L., Organic chemistry Pearson Education P Ltd 2011				
E-Re	E-References				
1	www.masterorganicchemistry.com/2017/02/23/rules-for-aromaticity				
2	www.introorganicchemistry.com				

HOMEN EMPONERIES	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc Programme Code PCH Regulations 2						2020-2022		
Department	Ch	emistry				Semester			1
Course Code	Cou	rse Name		erioc We		Credit	Max	imun	n Marks
			L	Т	Р	C	CA	ES	E Total
20P1CH02	CORE PAPER Transition meta Chemistry		5			05	25	75	100
Course Objectives	•	nowledge on physica ments. 2. To give ela				· ·			
POs		PROG	RAM	IME	E O	UTCOME			
PO 1		strating comprehensive k ndergraduate programme o			and 1	understanding o	f one or m	ore di	sciplines that
PO 2	Ability to express	thoughts and ideas effect confidently share ones view	tively	in w	ritin ress	g and orally Coherself /himself.	ommunicate	with	others using
PO 3		y analytic thought to a b the basis of empirical evide							ce arguments
PO 4		plate from what one has le ems rather than replicate o							
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	mav	varie	ty of sources dra	aw valid Co	nclusio	ons.
PO 6		and capability for asking to recognise cause and eff							-
PO 7	-	ectively and respectfully up and act together as a gr					-		
PO 8	ideas, evidence and	interpret and draw conclu experiences from an oper	n mind	ed ar	nd re	asoned perspect	ive.		•
PO 9	-	to lived experiences with s				-			-
PO 10	variety of relevant	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data.							
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.								
PO 12		of the values and beliefs of		-					-
PO 13	Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.								
PO 14	inspiring vision bu	pping out the tasks of a diding a team who can help	o achie	ve th	e vis	sion motivating.	-		-
PO 15		knowledge and skills inclues throughout life through	-		ng h	ow to learn that	are necessa	ry for	participating

COs	COURSE OUTCOME
CO 1	Students will learn the metallurgy and general properties of transition, and inner transition elements.
CO 2	Students can explore constructive application of nuclear chemistry.
CO 3	Students will know the present national and international status in nuclear mission.
CO 4	Students will analyze the various nuclear decay process.
CO 5	Students will evaluate the present methodologies in nuclear waste treatment.
Pre-requisites	

KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping															
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos	Cos KLs POs KLs											LS			
СО	1				0				PO	1			2	4	
	1				2				PO	2			1		
CO	2				3				PO				5		
	-				5				PO				5		
CO	3				2				PO				4		
					2				PO				6		
CO	4			4					PO 7			2 4			
								PO 8 PO 9				4			
CO	5		5					PO 10				3			
								PO 11				3			
PSO	S			I	KLs			PO 12				2			
PSO	1				3			PO 13				1			
PSO	2				4			PO 14			6				
PSO	3				1			PO 15			3				
						CO/P	-								
	(3/2/1 i	ndicat	es the s	trengtl	ı of coı	relatio	on, 3-s	trong,	2-med	lium, 1	-weak))		
COs					-	Pro	gramn	ne Out	come	(POs)	-	-			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO3	3	2	1	1 1 1 1 1					2	2	2	3	2	1	2
CO4	CO4 1 1 2 2 3 1 1					1	3	1	2	2	1	1	1	2	
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)											
Cos	Programme Specific Outcome (POs)										
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	2	3	2	2	1						
PSO2	1	2	1	3	2						
PSO3	2 1 2 1 1										

Course Assessment Methods						
Direct						
1. Continuous Assessment Test I, II & Model						
2. Assignment						
3. End Semester Examinations						
Indirect						
1. Course End Delivery						

Content of the Syllabus								
	Transition Elements	Periods	15					
Unit - I	nit - I Position in the periodic table - Electronic configuration - General characteristics Atomic radii - Ionic radii - Variation along the period and group - Variable valency Colour - Magnetic properties - Catalytic property - Non-stoichiometry - Stabilization of unusual oxidation states - Structure (only) of d-block complexes - $[Nb_6Cl_{12}]^{2+}$ $[Re_2Cl_8]^{2-}$ - $[Mo_6Br_8]^{4+}$ - $[Ni_2(DMG)_2]$.							
	Inner Transition Elements	Periods	15					
Unit - II	Position in the periodic table - Electronic configuration - C Magnetic properties - Colour and Spectra - Separation of contraction - Cause and consequences - Gadolinium break of Thorium and Uranium - Comparison of lanthanides an lanthanides and actinides.	of lanthanides - Shift reagents	- Lanthanide - Extraction					
	Fundamentals of Nuclear Chemistry	Periods	15					
Unit - III	Nuclear structure-mass and charge - Nuclear moments -Nuclear models (shell model and liquid drop model) - Binding energy - Stability rules - Magic numbers - n/p ratio - Nuclear forces - Modes of radioactive decay - Alaba decay - range - Jonizing power							
Unit - IV	Nuclear Reactions and Instrumental Techniques	Periods	15					

	Bethe's notation - Q value - Reaction cross section - Threshold energy - Columbic barrier - Excitation function - Various types of nuclear reactions - Scattering - evaporation - photonuclear - Spallation - Fragmentation - Fission - Fusion - Stripping - Pick-up reactions - Detection and measurement of radioactivity - Proportional counter - Geiger-Muller counter - Scintillation counter - Semiconductor detector - Cloud chamber							
	- Charged particle accelerator - Linear accelerator - Cyclotron - Beatron - Synchroton. Nuclear Energy and Trace Elements Periods 15							
Unit - V	Nuclear fission and Nuclear reactors - Characteristics of distribution of fission, Theories of fission - Fissile and fertil and stellar energy - Fusion bomb - synthetic elements - reprocessing - radiation hazards and prevention. Application neutron activation analysis - isotopic dilution analysis - Uses mechanistic studies, agriculture, medicine and industry - Rad chemistry - Atomic Power Projects in India- nuclear holocau	fission reactio le isotopes - Nu - Nuclear wast ns of radioacti s of tracers in s lio carbon datin	ns - Product uclear fusion es - nuclear ve isotopes - tructural and					
	Total Periods							

Text	Books
1	H.J. Arnikar, Essentials of Nuclear Chemistry, 4th Edn., New Age International 2005.
2	J.D. Lee, Concise Inorganic Chemistry, 6th Edn., ELBS, London 1998.
Refer	ences
1	D. Shriver, M. Weller, T. Overton, J. Rourke, and F. Armstrong, Inorganic Chemistry, 6th Edn., WH
1	Freeman and Company, New York 2014.
2	C.E. Housecroft, and A.G. Sharpe, Inorganic Chemistry, 4th Edn., Pearson Education Limited, Essex
2	2012.
E-Re	ferences
1	chemed.chem.purdue.edu/genchem/topicreview/bp/ch23/history.php
1	chemed.chem.purdue.edu/genchem/topicieview/op/ch25/filstory.php

MOREN ENPOYERUISI	VIVEKANAN	DHA COLLEGE OF A (AUTON Elayampalayam, Ti	IOMO	DUS)		OR WOMI	EN	CONTINUES OF STATES	
Programme	M.Sc Programme Code PCH Regulations 2020-202									
Department	Chemistry Semester 1									
Course Code	Cou	urse Name	per	erioc We	ek	Credit		1	m Marks	
20P1CH03	CORE PAPER Group theory, I Chemistry	I: Kinetics and Surface	L 5	Т	Р	C 05	CA 25	ES 7:		
Course Objectives	identifying the p	vledge of classifying th bint group of the unknov e conception of kinetics	wn mo	olecu	les.	ased on symm	netry and g	ain k	nowledge in	
POs		PROG	RAM	ME	C OI	UTCOME				
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.									
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.									
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		olate from what one has le ems rather than replicate o				-				
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	mav	varie	ty of sources dra	aw valid Co	nclusi	ions.	
PO 6	articulating ability	and capability for asking to recognise cause and eff	ect rela	ation	ships	define problem	ns formulate	hypo	theses.	
PO 7	-	fectively and respectfully oup and act together as a gr					-			
PO 8	ideas, evidence and	interpret and draw conclu l experiences from an oper	n mind	ed ar	nd re	asoned perspect	tive.			
PO 9		to lived experiences with s								
PO 10	· ·	ICT in a variety of learnin information sources and u	•				•		ate and use a	
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.									
PO 12	÷	e of the values and beliefs		<u> </u>						
PO 13	ethical issue from	e moral ethical values in o multiple perspectives and u	ise eth	ical p	oract	ices in all work.				
PO 14	inspiring vision bu	pping out the tasks of a tilding a team who can help	o achie	ve th	e vis	ion motivating.	_		_	
PO 15		knowledge and skills inclues throughout life through	-		ng h	ow to learn that	are necessa	try fo	r participating	

COs	COURSE OUTCOME
CO 1	Students will be able to identify point groups using symmetry elements and recognize symmetry operations.
CO 2	Students will learn to integrate knowledge to make rational answers in solving chemical problems.
CO 3	Students can measure the rate of a chemical reaction.
CO 4	Students will learn to evaluate the effect of catalyst, temperature on the rate of a chemical reaction and determine the activation energy.
CO 5	Students will learn and understand the importance, applications and basic aspects of surface chemistry.
Pre-requisites	

KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping															
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos	Cos KLs									8			KI	S	
СО	1				2				PO	1			2		
	1				3				PO				1		
СО	2				4				PO				5		
					•				PO PO				5		
CO	3				1				PO				6		
									PO				2		
CO	4		2					PO 8				4			
СО	5		~					PO 9				1			
	5				5			PO 10				3			
PSC)s			KLs					PO 11			3			
PSO	1				3			PO 12 PO 13				2			
PS0 PS0					<u> </u>			PO 13 PO 14				6			
PSO					1			PO 15				3			
			1		(CO/P	O Maj	pping							
	(3/2/1 i	ndicat	es the st	trength	n of con	relati	on, 3-s	trong,	2-med	ium, 1	-weak)			
COs						Prog	gramn	ne Out	come	(POs)					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO2	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO3	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO4	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Cas	Programme Specific Outcome (POs)										
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	3	2	1	2	1						
PSO2	2 3 1 1 2										
PSO3	1 1 3 2 1										

Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect 1. Course End Delivery

Content of the Syllabus									
	Basics of Group Theory	Periods	15						
	Principles of group theory - Symmetry elements and Symmetry operations. Properties								
	of group - Abelian, non Abelian, sub groups and cyclic gr								
Unit - I	tables, Classes and similarity transformation. Molecular po								
	of point group of molecules. Representation of groups								
	symmetry elements, Reducible and irreducible representatio								
	representation - Great orthogonality theorem and its conservation to the second C_{1} - C_{2} and C_{2}	equences - Co	nstruction of						
	character table for point groups (C_{2v} , C_{3v} and C_{2h}).	Periods	15						
	Applications of Group Theory		15						
	Standard reduction formula and conversion of reducible representation and irreducible								
	representation, direct product representation. Hybridization schemes for atoms in melagular of different geometry. AP, tetrahadral and AP, triangular planar								
Unit - II	molecules of different geometry - AB_4 tetrahedral and AB_3 triangular planar.								
01111 - 11	Symmetries of vibrational modes in non linear molecules (H ₂ O, NH ₃ and BF ₃). Selection rules for vibrational spectroscopy – IR & Raman active, mutual exclusion rule								
	and electronic transitions in formaldehyde. Symmetry in crystals - Hermann - Mauguin								
	symbols Space groups of crystals -Translational elements of symmetry – Comparison								
	of crystal symmetry with molecular symmetry	01 09 11110 01 9	Companson						
	Chemical Kinetics	Periods	15						
	Reactions in solution: Comparison between gas phase and li	quid phase read	ctions. Effect						
	of dielectric constant on reactions in solutions, effect of ionic strength on reactions in								
Unit - III	solutions - Primary salt effect. Influence of pressure on rates of reactions in solution -								
	significance of volume and entropy of activations. Study of fast reactions: Flow								
	methods, pulse methods and relaxation methods. Chain reactions - Stationary, non								
	stationary chain and explosion, Explosive reaction of H_2O_2 .	Linear free ener	rgy relation -						
T T 1 / T T	Hammett and Taft equation.	D 1	15						
Unit - IV	Kinetics and Catalysis	Periods	15						

	Acid-base catalysis – Types and mechanism. Hammet and Bronsted equation, Acidity function – Hammett-Deyrup acidity function, Hammett-Zucker hypothesis – Catalysis in biological systems. Enzyme catalysis - Michaelis-Menten equation. Factors affecting enzyme catalysed reaction: substrate concentration, pH and temperature. Inhibition of enzyme catalyzed reaction.								
	Surface Chemistry Pe	Periods	15						
Unit - V	Adsorption - Types of adsorption. Physical Adsorption adsorption isotherm, Langmuir's adsorption isotherm, Brunauer adsorption isotherm and its limitations. Heat of adsorption - Esti - B.E.T method, Point B method and radioactive tracer method kinetics of chemisorption, surface reactions and their mechanism physical and chemical adsorptions.	er-Emmett-T timation of s thethods. Che	Teller (BET) surface areas emisorption:						
Total Periods 75									

Text	Books
1	K.V. Raman, Group Theory, Tata McGraw - Hill Education (2004).
2	V.Ramakrishnan and M.S. Gopinathan, Group theory in chemistry, Vishal Publications, 1988.
3	A.S. Kunju, G. Krishnan, Group Theory and Its Applications in Chemistry, 2nd Edn, PHI learning private Ltd (2015).
4	B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, Vishal Publishing Co. (2016).
5	K.J. Rajaram and J.C. Kuriakose, Kinetics and mechanism of chemical transformations, Macmillan India Ltd (1993).
6	K.J. Laidler, Chemical Kinetics, Pearson (2009).
7	K. Veera Reddy, Symmetry and Spectroscopy of Molecules, New age international (2009).
8	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014).
9	Gurudeep Raj, Surface Chemistry, Goel Publishing House, (2002).
Refer	rences
1	F.A. Cotton., Chemical Applications of Group Theory 2nd Edn, Wiley Eastern Ltd (1989).
2	Capellos and B.H.J. Bielski, Kinetic systems, Willey interscience, Newyork, 1968.
3	P.W. Atkins., Physical Chemistry, 6th Edn, Oxford University Press, (1998).
4	Alan Vincent, Molecular Symmetry and Group theory – Programmed Introduction to chemical applications, Wiley, Newyork, 1977.
E-Re	ferences
1	http://vlab.amrita.edu/?sub=2&brch=193∼=1013&cnt=1
2	http://unicorn.mcmaster.ca/teaching/4PB3/SymmetryLectureNotes2009-Vallance-Oxford-level2.pdf
3	http://cbc.arizona.edu/~salzmanr/480a/480ants/kinintro/kinintro.html
4	http://nptel.ac.in/courses/122101001

NONEW EMPOWERHENT	VIVEKANANI	DHA COLLEGE OF A (AUTO) Elayampalayam, Ti	NOM	OUS	5)		DR WOM		ISO 9001-2008	
Programme	M.Sc	Programme Code	PCH Regulations 2020-2							
Department	Ch	nemistry				Semester			2	
Course Code	Cou	rse Name	per	erioc We	ek	Credit		1	m Marks	
			L	Т	Р	С	CA	ESI	E Total	
20P2CH04	CORE PAPER Organic Reaction		5			05	25	75	100	
Course Objectives		students knowledge i impart knowledge in u roduct.								
POs		PROG	RAM	IME	E OI	UTCOME				
PO 1		strating comprehensive k ndergraduate programme			and u	understanding o	f one or m	ore dis	sciplines that	
PO 2	Ability to express	thoughts and ideas effect confidently share ones vie	tively	in w				e with	others using	
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		blate from what one has leaders rather than replicate				-				
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	ma	varie	ty of sources dra	aw valid Co	nclusio	ons.	
PO 6		and capability for asking to recognise cause and eff							-	
PO 7	-	fectively and respectfully up and act together as a g					-			
PO 8	• •	interpret and draw conclu l experiences from an ope			-	-		d critic	cally evaluate	
PO 9	-	to lived experiences with				-			-	
PO 10		CT in a variety of learning information sources and u	-				-		ate and use a	
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.									
PO 12	-	of the values and beliefs		-						
PO 13	-	moral ethical values in multiple perspectives and		-			-	argum	nent about an	
PO 14	inspiring vision bu	pping out the tasks of a ilding a team who can help	p achie	ve th	e vis	ion motivating.	-		-	
PO 15		knowledge and skills incluss throughout life through			ng h	ow to learn that	are necessa	ary for	participating	

COs	COURSE OUTCOME
CO 1	Students will learn the addition reactions taking place in the organic molecules.
CO 2	Students acquire deep knowledge on elimination reactions.
CO 3	Students can understand the path of different molecular rearrangements.
CO 4	Students will learn about the mechanism and applications of various naming reactions used in organic synthesis.
CO 5	Students will evaluate the role of reagents in organic synthesis.
Pre-requisites	

Г

	KNOWLEDGE LEVELS														
1.F	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing														
	CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)														
Co	s			I	KLs				POs	8			KI	_S	
СО	1		2 PO 1												
	1				2				PO						
СО	2				2		PO 3 5								
								PO 4 5 PO 5 4							
CO	3				2					$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
CO	4				4			PO 7 PO 8							
							PO 9								
CO	5			5			PO 10				3				
DCC	`		171				PO 11				3				
PSC	JS		KLs					PO 12				2			
PSC) 1							PO 13							
PSO					4			-							
PSC	3				1	~~ -									
	(2/2/1:	ndiaat	es the st		CO/P	-		tuana	2 mod	: 1	waale)			
		5/2/11	nuicat	es the st	uengu						10111, 1	-weak)			
COs							gramn								
	-	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO10					
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
Cas	Programme Specific Outcome (POs)							
Cos	CO1	CO2	CO3	CO4	CO5			
PSO1	2	2	2	2	1			
PSO2	1	1	1	3	2			
PSO3	2	2	2	1	1			

Course Assessment Methods				
Direct				
 Continuous Assessment Test I, II & Model Assignment End Semester Examinations 				
Indirect				
1. Course End Delivery				

	Content of the Syllabus						
	Addition reactions	Periods	15				
 Unit - I Addition across C-C multiple bonds – Electrophillic, Nucleophillic, Free radicals, orientation and reactivity – Addition of halogen and nitrosyl chloride to olefin. Hydration of olefins and acetylenes. Epoxidation, Hydroboroation, Hydroxylation, Michael addition and Brich reduction. Diels Alder reaction, 1,3-dipolar additions. Carbenes, Nitrenes and their addition to double bond. Simmon-Smith reaction, Mannich, Stobbe, Darzen, Wittig, Wittig-Horner, Grignard, Thope and Benzoin condensation. 							
	Elimination reactions	Periods	15				
Unit - II	Unit - II Elimination reactions – Mechanism of E1, E2 and E1CB – stereochemistry of elimination, Hofmann and Saytzeff rules – competition between Elimination and substitution – Pyrolytic – Cis elimination, Chugaev reaction – Typical reactions such as Dehydration, dehydrohalogenation, Hofmann degradation, Cope elimination – Bredt's rule.						
	Molecular rearrangements	Periods	15				
Unit - III	Unit - III A detailed study of the mechanism of the following rearrangements. Wagner – Meerwin, Demyanov, Dienone–Phenol, Favorski, Baeyer – Villiger, Wolff, Stevens, Von – Richter, Beckmann, Kornblum–DeLaMare, Smiles, Jacobsen, Neber, Fries, Ireland-Claisen, Hofmann–Martius rearrangements.						
	Organic naming reactions and applications	Periods	15				
Unit - IV	Unit - IV A detailed study of the following naming reactions - Biginelli reaction, Hoeben – Hoesch reaction, Vilsmeyerformylation, Bucherer reaction, Pauson – Khand reaction, Heck reaction, Suzzuki, Stille, Sonogashira, Negishi, Cadiot–Chodkiewicz coupling reactions. Huigens synthesis. Baylis-Hillman, Luche, Yamaguchi.						
Unit - V	Reagents for Organic synthesis	Periods	15				

Aluminium chloride, Alumniumisopropoxide, N-Bromosuccinimide, OsO4, DCC, N-
Chlorosuccinimide, Diazomethane, Fenton's reagent, Hydrogen peroxide, Lead
tetraacetate, Lithium aluminium hydride, Perbenzoic acid, Periodic acid, Seleniun
dioxide, Sodium borohydride, NaCNBH3, DDQ, Wilkinson catalyst, Wolff Kishner
reagent, Wittig reagent.

Total Periods

7	5
	J

Text	Books					
1	Jerry March, Advanced organic chemistry - Reactions mechanism and structure, McGraw Hill Kogakusha Ltd., 1977.					
2	S.H. Mukhergee and S.P. Singh, Reaction mechanisms in organic chemistry, McMillan 1976.					
3	Raj K.Bansal, Organic Chemistry Reaction mechanisms, Hill Publishing Company Ltd 2006					
4	I.L. Finar, Organic chemistry, Vol. II. Pearson Education P Ltd 2011					
Refer	References					
1	S. N. Sanyal, Reactions, Rearrangements and Reagents, Bharati Bhavan Publishers & Distributor 2011					
2	V.K. Ahluwalia, Rakesh Kumar Parashar and R. K. Parashar, Organic Reaction Mechanisms Narosa Publishing House 2002					
E-Re	E-References					
1	https://www.name-reaction.com/list					
2	https //www.synarchive.com/named-reactions					

HOMEN EMPONECHIEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
Programme	M.Sc	M.Sc Programme Code PCH Regulations 2020-2022								20-2022
Department	С	hemistry				Semester				2
Course Code	Co	urse Name		erio r W		Credit		imur	m Marks	
			L	Т	Р	С	CA	ES	E	Total
20P2CH05	CORE PAPER Chemical Bond Chemistry	V: ing and Coordination	5			05	25	75	5	100
Course Objectives	-	knowledge on types of bo the concept of HOMO a		-					natio	on.
POs		PROGR	AM	IME	C OI	UTCOME				
PO 1		strating comprehensive known of the strate of the strategy strategy and the strategy			ınd ı	understanding o	of one or m	ore di	iscip	lines that
PO 2	Ability to express	thoughts and ideas effection confidently share ones view	vely	in w				with	oth	ers using
PO 3		y analytic thought to a boo ne basis of empirical evidence								rguments
PO 4		plate from what one has lea ems rather than replicate cu								
PO 5	arguments of other	e the reliability and relev s analyse and synthesise dat	a fro	m a v	variet	ty of sources dra	aw valid Co	nclusi	ons.	
PO 6		and capability for asking re to recognise cause and effect			· •	· ·		•••		Ũ
PO 7	-	fectively and respectfully w up and act together as a gro					-			
PO 8		interpret and draw conclusi l experiences from an open			-	-		l critio	cally	v evaluate
PO 9	-	to lived experiences with se							-	
PO 10	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data.									
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.									
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.									
PO 13	Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.									
PO 14	inspiring vision bu	pping out the tasks of a teal ilding a team who can help	achie	ve th	e vis	ion motivating.				-
PO 15	·	knowledge and skills includ as throughout life through se			ng h	ow to learn that	t are necessa	ry for	r par	ticipating

COs	COURSE OUTCOME
CO 1	Students will acquire sound knowledge on bonding in inorganic molecules.
CO 2	Students will learn the theories, mechanism of complex formation and the electronic spectra of coordination complexes.
CO 3	Students will acquire knowledge about term symbols and its applications.
CO 4	Students will analyze the bioinorganic molecules in coordination chemistry.
CO 5	Students will evaluate the various coordination theories.
Pre-requisites	

					KN	OWLE	EDGE	LEVE	LS						
1.1	Remei	nberin	i g, 2.U	ndersta			• •			, 5.Eva	luating	g, 6.Syı	nthesiz	ing	
	(3/2/1 i	ndicat	es the st) / PO . n of con			-	2-med	ium, 1	-weak))		
Co	Cos KLs									8	,		KL	s	
СО	1				2				PO				2		
	-				-				PO				1		
CO	2				3				PO				5		
									PO PO				<u> </u>		
CO	3				2				PO				6		
								PO 7				2			
CO	4		4					PO 8				4			
СО	5		5					PO 9				1			
	5		5					PO 10				3			
PSC	Os		KLs					PO 11				3 2			
PSC	1		3					PO 12 PO 13				1			
PSC					4			PO 14				6			
PSC			1					PO 15				3			
					(CO/P	O Maj	pping							
	((3/2/1 i	ndicat	es the st	trength	n of co	rrelati	on, 3-s	trong,	2-med	ium, 1	-weak)			
COs						Pro	gramn	ne Out	come	(POs)		1		1	1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO3	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)												
	Programme Specific Outcome (POs)											
Cos	S CO1 CO2		CO3	CO4	CO5							
PSO1	2	3	2	2	1							
PSO2	1	2	1	3	2							
PSO3	2	1	2	1	1							

Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect 1. Course End Delivery

Content of the Syllabus											
	Ionic Bonding	Periods	15								
Unit - I	 Ionic bonding - Lattice energy - Born equation-Born-Haber cycle - Radius ratio rule - Born Mayer equation - Kapustinskii modification - energetics of the dissolution of ionic compounds in polar solvents - polarization-Fajan s rule - results of polarization. Electronegativity – determination -Types of chemical forces - effects of chemical forces - melting and boiling points, solubility. 										
	Covalent Bonding and Molecular Structure	Periods	15								
Unit - II	Covalent bonding Formal charges-Limitations of octet rule- Hybridization and geometry-VSEPR model of methane, ammonia, water, silicon tetrafluoride, AX ₂ and AX ₄ type, and some xenon compounds, Bent's rule - Failures of VBT-MO theory LCAO method-Molecular orbitals in homo nuclear diatomic molecules of oxygen, beryllium, nitrogen and carbon, hetero nuclear diatomic molecules such as HCl, NO and CO-HOMO and LUMO concepts in bonding.										
	Coordination Theories	Periods	15								
Unit - III	CFT-Splitting pattern of d-orbital in various environments of ligands octahedra tetrahedral, square - planar-CFSE-Factors affecting the magnitude of CFSE-Weak an strong fields-Pairing energy-Jahn Teller distortion - Nephlauxetic effect-Limitations of CFT-LFT-Evidence for covalent nature of metal-ligand bonds-pi-bonding theory Construction of MO diagram for sigma and pi Oh complexes.										
	Reaction Mechanism in Coordination Complexes	Periods	15								
Unit - IV	Stability of complexes, Thermodynamic and kinetic stability-stability constants- Substitution reactions-General mechanism-Schemes of octahedral, tetrahedral and square planar complexes-Trans effect-Theories of trans effect-pi-bonding theory and polarisation theory - Applications of trans effect-Catalysis by transition metal complexes, Hydrogenation of alkene-Wilkinson's catalyst, Hydroformylation - Oxo process, Wacker process and Zieglar-Natta catalysis.										

	Electronic Spectra and Organometallics	Periods	15
Unit - V	Spectroscopic term symbols for dn ions-derivation of term term symbols-Energy level diagrams. Electronic spectra of interpretation of electronic spectra of d1 to d9-Tanabe-Suga spectra-Carbonyls Binuclear and tri nuclear carbonyls of iro uses - Nature of M-CO bond in carbonyls - Nitrosyls-N Metallocenes Ferrocene, Cobaltocene-Preparation, Propertie	complexes-Org no diagrams-ch on - preparation lature of M-N	el diagram - arge transfer n, properties, O bonding -
	75		

Text	Text Books								
1	J. E. Huheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Edn, Pearson education 2006								
2	R. D. Madan., Modern Inorganic Chemistry, Chand Publishers 2004								
References									
1	C. N. Banwell., Fundamentals of Molecular Spectroscopy, Mc Graw Hill, Newyork 2001								
2	R. Chang., Basic principles of Spectroscopy, McGraw Hill Ltd., New York, 1971								
E-Re	E-References								
1	http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/vsepr.html								
2	http//www.chem.iitb.ac.in/people/Faculty/prof/pdfs/L5.pdf								

HOUEN EMPONENTED	VIVEKANANI	DHA COLLEGE OF (AUTO) Elayampalayam, T	NOM	OUS	5)		DR WOMI		Vinendard Entretto				
Programme	M.Sc Programme Code PCH Regulation								2020-2022				
Department	C	nemistry				Semester			2				
Course Code	Со	urse Name		erioc We		Credit	Maximum Marks		Marks				
			L	Т	Р	С	CA	ESE	Total				
20P2CHP01	CORE PRACTIC Organic Chemist				5	04	40	60	100				
Course Objectives	chemical reaction organic compour	1. The objective of this lab is to provide hands-on opportunities to apply the knowledge of chemical reaction in functional group analysis. 2. It also gives hands-on training to synthesize organic compounds via a variety of organic reactions. 3. To promote the students towards research activity and job opportunities.											
POs	PROGRAMME OUTCOME												
PO 1		Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.											
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.												
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications												
PO 4		blate from what one has leaders rather than replicate											
PO 5	-	e the reliability and rele s analyse and synthesise d				-	-						
PO 6		and capability for asking to recognise cause and eff											
PO 7	on the part of a gro	ectively and respectfully up and act together as a g	roup in	the	intere	ests of work effi	ciently as a	membe	r of a team.				
PO 8	ideas, evidence and	interpret and draw conclu experiences from an ope	n mind	ed a	nd rea	asoned perspect	ive.						
PO 9		to lived experiences with				-			-				
PO 10	variety of relevant	CT in a variety of learning information sources and u	ise app	ropri	ate so	oftware for anal	ysis of data						
PO 11	Ability to work in through to complete	lependently, identify apprint	ropriat	e res	ource	es required for a	a project an	d mana	ge a project				
PO 12	Possess knowledge	of the values and beliefs	of mul	tiple	cultu	res and a globa	l perspectiv	e.					
PO 13	ethical issue from	moral ethical values in nultiple perspectives and	use eth	ical j	practi	ices in all work.	-						
PO 14	inspiring vision bu	pping out the tasks of a dding a team who can hel	p achie	ve th	ie vis	ion motivating.							
PO 15		nowledge and skills inclu s throughout life through				w to learn that	are necessar	y for pa	rticipating				

COs	COURSE OUTCOME
CO 1	Students can able to investigate and report an unknown compound systematically.
	Students will be known to synthesize, recrystallize and finding melting point of an organic compound. It will help them to carry out their research in future.
CO 3	Students can apply knowledge on identifying various functional groups.
CO 4	Students will analyze the various separation methods.
CO 5	Students can evaluate different binary organic mixtures.
Pre-requisites	

					KN	OWLE	DGE	LEVE	LS						
1.	Reme	mberin	ig, 2.U	ndersta	-	3.App / PO /				, 5.Eva	luating	g, 6.Syr	nthesiz	ing	
	((3/2/1 i	ndicat	es the st	trength	n of con	rrelatio	on, 3-s	trong	2-med	ium, 1	-weak)			
Co	Cos KLs									S			KI	_S	
CC) 1				3				PO	1			2		
	/1				5				PO	2			1		
CC)2				1				PO				5		
									PO				5		
CC) 3				3				PO				4		
									PO				6		
CC)4		5					PO 7 PO 8				4			
								PO 9				1			
CC) 5		2					PO 10				3			
Da	0		KLs					PO 11				3			
PS	Os							PO 12				2			
PSO	D 1		1					PO 13				1			
PSO			4					PO 14				6			
PSO	D 3		1					PO 15				3			
		(21211 .		41		CO/P	-			•	• •	•			
		(3/2/11	naicat	es the st	irengu			-			ium, i	-weak)			
COs								mme Outcome (POs)							
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			PO13	PO14	
CO1	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO2	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO5	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
	Programme Specific Outcome (POs)									
Cos	CO1	CO2	CO3	CO4	CO5					
PSO1	3	1	3	1	3					
PSO2	2	1	2	2	2					
PSO3	1	1	1	1						

Course Assessment Methods						
Direct						
1. Continuous Assessment Test I, II & Model						
2. Assignment						
3. End Semester Examinations						
Indirect						
1. Course End Delivery						

Content of the Syllabus								
	Qualitative analysis of binary mixture of organic Periods compounds :	30						
Unit - I	Preliminary pilot analysis, pilot report, bulk separation, systematic analysis of each component inclusive of preliminary identification, confirmatory tests, derivative preparation and recording melting point/boiling point of components.							
	Single stage preparations Periods	45						
Unit - II	Single stage preparation of organic compounds involving synthetic methods like oxidation, acylation, nitration, sulphonation, Bromination, Esterification, hydrolysis and condensation (six preparations).							
Total Periods								

Text books							
1	Antony J. Hannaford, Austin R. Tatchell, Brian S. Furniss, Peter W.G. Smith, Vogel's Text Book of practical organic chemistry, Pearson Education (2006).						
Refe	References						
1	V. Venkateshwaran, R. Veerasamy, A. R. Kulandaivelu, Basic principles of practical chemistry, Sultan Chand & Sons,New Delhi, 2016						
E-Re	ferences						
1	http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html						
2	http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1						
3	http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1						

MONEN EMPONERNIEN	VIVEKANANI	DHA COLLEGE OF AR' (AUTONO) Elayampalayam, Tiruc	MOU	S)			OR WOM		ISO SCO12008		
Programme	M.Sc	Programme Code		ions 2	2020-2022						
Department	Chemistry Semester								2		
Course Code	Course Name			erio W		Credit		<u> </u>	m Marks		
			L	Т	Р	С	CA	ESE	Total		
20P2CHP02	CORE PRACT Inorganic Chen			5	04	40	60	100			
Course Objectives	1. To acquire training in microscale experimental techniques. 2. To acquire knowledge on the properties of ions and their compounds. 3. To promote the students towards research activity and job opportunities										
POs		PROGRA	MM	E C)UT	COME					
PO 1		strating comprehensive know ndergraduate programme of st		and	unde	erstanding o	f one or m	ore dise	ciplines that		
PO 2	Ability to express	thoughts and ideas effective confidently share ones views	ely in					e with o	others using		
PO 3		y analytic thought to a body ne basis of empirical evidence							e arguments		
PO 4		olate from what one has learn ems rather than replicate curr			-	-					
PO 5	arguments of other	e the reliability and relevan s analyse and synthesise data	from a	ı vari	iety of	sources dra	aw valid Co	nclusio	ns.		
PO 6		and capability for asking rele to recognise cause and effect			-				-		
PO 7		fectively and respectfully with up and act together as a group									
PO 8	• •	interpret and draw conclusion l experiences from an open m		-		•		d critica	ally evaluate		
PO 9		to lived experiences with self									
PO 10		ICT in a variety of learning s information sources and use a					-		te and use a		
PO 11	through to complet								ge a project		
PO 12	0	of the values and beliefs of n	-			, v	· ·				
PO 13		e moral ethical values in con- nultiple perspectives and use		-			-	argume	ent about an		
PO 14	inspiring vision bu	pping out the tasks of a team ilding a team who can help ac	hieve	the v	ision	motivating.	-		-		
PO 15		nowledge and skills including throughout life through self			now to	b learn that	are necessar	y for pa	rticipating		

COs	COURSE OUTCOME
CO 1	Students will learn how to conduct a process systematically and precisely.
CO 2	The qualitative analysis gives a type of mental training and develops a power of reasoning not equal to any other course in chemistry.
CO 3	The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during qualitative and quantitative examination of a chemical compound.
CO 4	Students will analyze the use of complexometric titrations in water analysis
CO 5	Students will evaluate the rare cations using qualitative analysis.
Pre-requisites	

Г

KNOWLEDGE LEVELS															
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing															
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Co		<i>JI 2</i> / 1 1	luicai		KLs	liciau	JII, 3-5	PO		iuiii, i	-wcak)	KI	_S		
	. 1				2				PO	1			3		
CO	1				2				PO	2			4		
СО	2				3				PO				1		
									PO				2		
CO	3				1				PO PO				5		
									PO				3		
CO	4				1				PO				6		
СО	5		1				PO 9				4				
	5						PO 10				1				
PSO	Os		KLs				PO 11 PO 12				3 5				
PSC) 1		1				PO 12 PO 13				2				
PSC			1				PO 14				4				
PSC					1			PO 15				6			
			•			CO/P	-								
	((3/2/1 i	ndicat	es the st	trength	of co	rrelatio	on, 3-s	trong	, 2-med	ium, 1	-weak)			
COs			r		r	Prog	1	ne Out			r	r	r	1	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12		PO14	PO15
CO1	2	1	2	3	1	1	2	1	1	2	2	1	3	1	1
CO2	3	2	1	2	1	1	1	1	2	1	3	1	2	2	1
CO3	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1
CO4	1	1	3	2	1	1	1	1 1 1 3 1 1 2 1				1	1		
CO5	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1
		(3/2/	l indica	ates the		CO / Pa			rong, 2	2-mediu	ım, 1-v	veak)			

Car	Programme Specific Outcome (POs)										
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	2	1	3	3	3						
PSO2	2	1	3	3	3						
PSO3	2	1	3	3	3						

Course Assessment Methods						
Direct						
1. Continuous Assessment Test I, II & Model						
2. Assignment						
3. End Semester Examinations						
Indirect						
1. Course End Delivery						

Content of the Syllabus									
	Complexometric titrations	Periods	30						
Unit - I	Estimations of Ca, Cu, Mg, Ni & Zn using complexometric titration								
	Qualitative Analysis	Periods	45						
Unit - II	Qualitative analysis employing semi micro methods and common cations and ions of the following less famili- tungsten, selenium, tellurium, cerium, thorium, titanium, ziro and lithium.	ar elements N	Iolybdenum,						
	Total Periods								

Text Books									
1	V.V. Ramanujam, Inorganic semi micro qualitative analysis, The National Publishing Co., Ltd., Madras								
	2002.								
Refer	References								
1	Vogel, Inorganic quantitative analysis, Pearson Education 2001.								
E-Re	ferences								
1	http://lib.hku.hk/Press/9622092128.pdf								
2	http://www.kvsunjuwan.com								
3	http://science-blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf								

MOREL ENPONEMIAN	VIVEKANANI	DHA COLLEGE OF AR (AUTONO) Elayampalayam, Tiruc	MOU	S)			DR WOMI	τΰν	Rheinland D 150 9001:2008		
Programme	M.Sc	Programme Code			ons 2	2020-2022					
Department	(Chemistry				Semester	r		2		
Course Code	Course Name			erio We		Credit	Max	timum	ım Marks		
			L	Т	Р	С	CA	ESE	Total		
20P2CHCP03	CORE PRACT Physical Chemi			4	04	40	60	100			
Course Objectives	properties of th	To apply the principles of electrochemistry in the analysis of physical and chemical properties of the given compounds and develop laboratory skills and the ability to work with instruments independently.									
POs		PROGRA	AMM	E C	DUT	COME					
PO 1		strating comprehensive known dergraduate programme of s		and	unde	erstanding o	f one or m	ore disc	iplines that		
PO 2	Ability to express	thoughts and ideas effective confidently share ones views	ely in					e with o	thers using		
PO 3		y analytic thought to a body ne basis of empirical evidence							arguments		
PO 4		blate from what one has learn ems rather than replicate curr			-	-					
PO 5	arguments of other	e the reliability and relevar s analyse and synthesise data	from a	vari	ety of	sources dra	aw valid Co	nclusion	s.		
PO 6	articulating ability	and capability for asking rele to recognise cause and effect	relatio	nshij	ps def	ine problem	ns formulate	hypothe	eses.		
PO 7		fectively and respectfully wit up and act together as a group									
PO 8	ideas, evidence and	interpret and draw conclusion experiences from an open m	inded	and 1	easor	ed perspect	ive.				
PO 9		to lived experiences with self							-		
PO 10		CT in a variety of learning s information sources and use a							e and use a		
PO 11	Ability to work ind through to complet	lependently, identify approprion.	riate re	sour	ces re	equired for	a project an	d manag	ge a project		
PO 12	-	of the values and beliefs of n	-								
PO 13	-	e moral ethical values in con nultiple perspectives and use		-			-	argume	nt about an		
PO 14	inspiring vision bu	pping out the tasks of a tear ilding a team who can help ac	chieve	the v	ision	motivating.	-		-		
PO 15		nowledge and skills including s throughout life through self			now to	b learn that	are necessar	y for pai	ticipating		

COs	COURSE OUTCOME
CO 1	Students will understand the breadth and concepts of physical chemistry.
CO 2	Students will develop skills in procedures and instrumental methods applied in analytical and practical tasks of physical chemistry
CO 3	Students will plan, conduct, review and report the experiment.
CO 4	Students will analyze the possible errors in phase studies.
CO 5	Students will evaluate the adsorption mechanism with time.
Pre-requisites	

					KNO	OWLE	EDGE	LEVE	LS						
1				ndersta es the st	CO	/PO	/KLN	Ларріі	ng					ing	
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) Cos KLs POs KLs															
C	D 1				2				PO	1			3		
	51				Z				РО				1		
C	O 2				1				PO				4		
	-				-				PO				2		
C	C 3				3				PO				6		
									PO PO				6		
C	D 4				2				PO			1			
~								PO 9				1			
C	D 5		6					PO 10				4			
ÞS	SOs		KLs					PO 11				5			
								PO 12				3			
	01		3					PO 13				1 6			
	O 2 O 3		4					PO 14 PO 15				1			
13	03				1	CO/P	O Maj	nning	FU	15			1		
	((3/2/1 i	ndicat	es the st					trong	, 2-med	ium, 1	-weak))		
						Pro	gramn	ne Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	1	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	2	1	3	1	1	1	2	2	1	1	2	2	1	2
CO2	1	3	1	2	1	1	2	3	3	1	1	1	3	1	3
CO3	3	1	2	2	1	1	2	1	1	2	1	3	1	1	1
CO4	2	2	1	3	1	1	1	2	2	1	1	2	2	1	2
CO5	1	1	1	1	3	3	1	1	1	1	2	1	1	3	1
			. :	otos tho			SO Ma			.					

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

Car		Pro	gramme Specific Out (POs)	come	
Cos	CO1	CO2	CO3	CO4	CO5
PSO1	2	2	3	2	1
PSO2	1	1	2	3	2
PSO3	2	2	1	1	1

Course Assessment Methods					
Direct					
1. Continuous Assessment Test I, II & Model 2. Assignment					
3. End Semester Examinations					
Indirect					
1. Course End Delivery					

Content of the Syllabus									
	Electrical Experiments	Periods	75						
	i) Potentiometric titration								
	a) HCl vs NaOH b) CH ₃ COOH vs NaOH c) HCl, CH ₃ COOH vs NaOH (mixture of								
	acids) d) KCl vs AgNO ₃ e) HI vs AgNO ₃								
Unit - I	ii. Determination of solubility product								
	a. Galvanic cell method. b. Concentration cell method.								
	iii. Estimation of mixture of halides (HI, KCl vs AgNO ₃)								
	iv. Determination of E° , Zn^{2+}/Zn and estimation of Zn^{2+} .								
	v. Determination of hydrolysis constant (for aniline hydrochloride).								
	Total Periods		75						

Те	Text Books								
1	A .O. Thomas, Practical Chemistry, Scientific Book Centre, Cannanore (2003).								
2	V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995).								
Re	References								
1	B Viswanathan, P.S. Raghavan, Practical Physical Chemistry, Viva Books Private Limited, (2005).								
E-	E-References								
1	http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Material Science								
2	http://www.cffet.net/sia-e/2_Pot_titr.pdf								

HONEL ENPOYEMUCH	VIVEKANANI	DHA COLLEGE OF A (AUTO) Elayampalayam, Ti	NOM	DUS	5)		OR WOM	EN	ISO 8001:2008
Programme	M.Sc	Programme Code	PCH Regulations 2020-202						2020-2022
Department	Cł	emistry				Semester			1
Course Code	Cou	rse Name	per	erioc We		Credit		1	n Marks
			L	Т	Р	С	CA	ES	E Total
20P1CHE01	Elective: Nanoscience ar	d Nanotechnology	4			4	25	75	100
Course Objectives		oduce the students to ge of students in nove					.		
POs		PROG	RAM	MF	E OI	UTCOME			
PO 1		strating comprehensive k ndergraduate programme			and u	inderstanding o	of one or m	ore di	sciplines that
PO 2	Ability to express	thoughts and ideas effect confidently share ones vie	tively	in w				e with	others using
PO 3		y analytic thought to a b basis of empirical evide							ce arguments
PO 4		plate from what one has le				-			
PO 5	-	e the reliability and rele s analyse and synthesise d				-	-		
PO 6		and capability for asking to recognise cause and eff							-
PO 7	-	ectively and respectfully up and act together as a g					-		
PO 8		interpret and draw conclu experiences from an ope			-	•		d critic	cally evaluate
PO 9	-	to lived experiences with				-			-
PO 10		CT in a variety of learning information sources and u	0				•		ate and use a
PO 11	through to complet		-			-			age a project
PO 12		of the values and beliefs							
PO 13	-	moral ethical values in multiple perspectives and		-			-	argun	nent about an
PO 14	inspiring vision bu	pping out the tasks of a ilding a team who can help	p achie	ve th	e vis	ion motivating.	-		
PO 15	. –	nowledge and skills inclu s throughout life through			ng ho	w to learn that	are necessar	y for p	participating

COs	COURSE OUTCOME
CO 1	Students will acquire knowledge on various synthetic methods of nanoparticles and techniques to characterize them.
CO 2	Students will be able to understand various types of nanoparticles and their properties.
CO 3	Students learn about the promising applications of nanotechnology.
CO 4	Students will analyze the properties of various dimensional nanoparticles.
CO 5	Students will evaluate the recent advancements in nanotechnology.
Pre-requisites	

					KN	OWLE	DGE	LEVE	LS						
1.				ndersta es the st	CC) / PO /	KL N	I appir	ng					ing	
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak) Cos KLs POs KLs															
CC	N 1				2				PO	1			3		
U)1				2				PO	2			4		
CC)2				3				PO				1		
					5				PO				2		
CC) 3				1				PO				5		
									PO PO				5		
CC)4				1				PO			3 6			
							PO 9				4				
CC) 5		1					PO 10				1			
DC	0.		IZI .				PO 11				3				
PS	Us		KLs					PO 1	2			5			
PSO			3					PO 13					2		
PSO			4					PO 14				4			
PSO	D 3				2	CO/P	<u> </u>	•	PO 1	5			6	1	
	(3/2/1 i	ndicat	es the st					trong	2-med	ium 1	-weak`	`		
		512111	nuicat	es the st	uengu		gramn				iuiii, i	- weak	,		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		DO11	PO12	PO13	DO14	DO15
CO1			2	3		1	2			2	2	1	3		
CO1	2	1			1			1	1					1	1
	3	2	1	2	1	1	1	1	2	1	3	1	2	2	1
CO3	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1
CO4	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1
CO5	1	1	3	2	1	1	1	1	1	3	1	1	2	1	1
						CO/P						1 \			

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

Cos		Pro	gramme Specific Out (POs)	come	
Cos	CO1	CO2	CO3	CO4	CO5
PSO1	2	3	1	1	1
PSO2	1	2	1	1	1
PSO3	3	2	2	2	2

Course Assessment Methods

Direct

1. Continuous Assessment Test I, II & Model

2. Assignment3. End Semester Examinations

Indirect

1. Course End Delivery

	Content of the Syllabus								
	Introduction to Nanoscience	Periods	15						
Unit - I	Unit - IIntroduction - history - nanoscale & nanotechnology - nanotech Ge nanoscience - nanocomposites - zero dimensional nanomaterials - one c nanomaterial - two dimensional materials - three dimensional nanomaterials. global scenario in nanotechnology.								
	Synthesis of Nanomaterials	Periods	15						
Unit - II	Physical methods - Physical Vapour Deposition (P Thermolysis-sonochemical approach, CVD, Electrodeposit Thermal decomposition of complex precursors, Re Hydrothermal, Solvothermal method.	ion. Precipitati	ion methods-						
	Characterizations of nanomaterials	Periods	15						
Unit - III	X-ray Diffraction (XRD), Thermal gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), UV spectroscopy, Photo Electron Spectroscopy (XPS). Electron Microscopy: Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM). Morphological: SAED analysis, Atomic Force Microscopy (AFM).								
	Properties and Applications of Nanaoparticles	Periods	15						
Unit - IV	Size dependence of Properties - Chemical Reactivity – S Electronic energy levels - Bohr radius. Optical properties - Quantum size effects. Magnetic properties - size dependent p and saturation magnetization. Applications: Medicine, environmental protection, food and agriculture, energy, na Risks of nanomaterials.	surface plasmo properties such Nanoelectronio	on resonance, as coercivity cs, batteries,						
	Nano biomaterials	Periods	15						
Unit - V	Introduction: Biological building blocks - size of building blocks and nanostructures - protien nanoparticles. Nucleic Acids - DNA Double Nanowire, Genetic code and protein synthesis - Biological nanostructures - Multilayer films. Biopolymers, Biomaterials.								
	Total Periods		75						

Text	Books
1	Mark Ratner, Daniel Ratner, Nanotechnolgy, Pearson Education, Inc. 2007
2	G.Schmid Eds, Nanoparticles, Wiley-VCH, 2004.
3	G.HodesEds, Electrochemistry of Nanomaterials, Wiley-VCH, 2001.
4	M.Kohler, W.Fritzsche, Nanotechnology, Wiley-VCH, 2004
Refer	rences
1	K.L.Choy, Process principles and applications of novel and cost- effective ESAVD based methods, World Scientific Publishing, Singapore, 2002
2	A.Jones and M.Mitchell, Nanotechnology-Commercial Opportunity, Evolution Capital Ltd. London, 2001.
3	Mick Wilson, Kannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse, Nanotechnology basic science and emerging technologies, overseas press
4	Charles P. Poole, Jr., Frank J. Owens, Introduction to Nanotechnology, Wiley reprint 2012
E-Re	ferences
1	nptel.ac.in/courses/103103033/module9/lecture1.pdf
2	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf
3	https://www.ceitec.eu/nanoparticles-for-biomedical-applications/f33079
4	nptel.ac.in/courses/103103033/module9/lecture1.pdf
5	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf

NOLIEN ENPONEEMIEN	VIVEKANAN	DHA COLLEGE OF AR' (AUTONO) Elayampalayam, Tiruc	MOU	S)			DR WOMI		Resentand INTERCO			
Programme	M.Sc	M.ScProgramme CodePCHRegulations2020-2022										
Department	(Chemistry				Semester	r		1			
Course Code	Co	ourse Name	per	erio W	eek	Credit			Marks			
		L T P C CA ESE Total										
20P1CHE02	Elective: Instrumental M	ethods of Analysis	4			04	25	75	100			
Course Objectives		he students to handling pectroscopic techniques. ods.										
POs		PROGRA	MM	E C	DUT	COME						
PO 1		strating comprehensive known of strating strates and s		and	unde	erstanding o	f one or m	ore disc	iplines that			
PO 2	Ability to express	thoughts and ideas effective confidently share ones views	ely in					e with c	thers using			
PO 3		y analytic thought to a body ne basis of empirical evidence							arguments			
PO 4		olate from what one has learn ems rather than replicate curr			-	-						
PO 5	arguments of other	e the reliability and relevan s analyse and synthesise data	from a	vari	iety of	sources dra	aw valid Co	nclusior	18.			
PO 6		and capability for asking rele to recognise cause and effect			-				-			
PO 7	-	fectively and respectfully with up and act together as a group					-					
PO 8		Ability to analyse interpret and draw conclusions from quantitative qualitative data and critically evaluate deas, evidence and experiences from an open minded and reasoned perspective.										
PO 9	-	to lived experiences with self				-			-			
PO 10	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data. Ability to work independently, identify appropriate resources required for a project and manage a project through to completion. Possess knowledge of the values and beliefs of multiple cultures and a global perspective.											
PO 11												
PO 12												
PO 13	Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.											
PO 14	inspiring vision bu	pping out the tasks of a team ilding a team who can help ac	hieve	the v	ision	motivating.	-		-			
PO 15		cnowledge and skills including es throughout life through self			now te	b learn that a	are necessar	y for pa	rticipating			

COs	COURSE OUTCOME
CO 1	Students will understand the fundamentals of molecular spectroscopy.
CO 2	Students will learn about the concepts of electronic spectroscopy.
CO 3	Students will apply their knowledge in absorption and emission spectroscopy.
CO 4	Students will analyze the various electro analytical methods.
CO 5	Students can evaluate the thermal stability of various materials using TGA.
Pre-requisites	

Г

					KN	OWLE	DGE	LEVE	LS							
1.F	Reme	mberin	ng, 2.U	ndersta	nding,	3.App	lying,	4.Ana	lyzing	, 5.Eva	luating	g, 6.Syı	nthesiz	ing		
				_) / PO			-							
		(3/2/1 i	ndicat	es the st	trength	1 of col	rrelatio	on, 3-s			ium, 1	-weak)				
Co	s]	KLs				PO					KLs		
CO	1				4				PO				5			
									PO				2			
СО	2				2				PO				2			
									PO				1			
CO	3				3				PO PO				5			
									PO				3			
CO	4				5				PO				2			
								PO 9				1				
СО	CO 5		1					PO 10			3					
PSC)c			,	KLs				PO	11			4			
				NL8				PO 12 6								
PSO				3				PO 13					5			
	PSO 2			4					PO				1			
PSO	3				1				PO 1	15			4			
		(2/)/1;	ndiaat	es the st		CO/P			trong	2 mod	ium 1	week)				
		312/11	nuicai	es the s	uengu			-			iuiii, 1	-weak)				
COs		DOJ	DO 2	Programme Outcome (POs) PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PO13 PO14 PO1							DO15					
	PO1 2	PO2	PO3	PO4	PO5	PO6 2	PO7 2	PO8	1	2	3	1	2	1	3	
CO1	-	1	1	1	1			-	-					-	-	
CO2	1	3	3	2	2	1	2	3	2	2	1	1	1	2	1	
CO3	1	2	2	1	1	1	1	2	1	3	2	1	1	1	2	
CO4	3	1	1	1	1	3	1	1	1	1	2	2	3	1	2	
CO5	1	2	2	3	3	1	1	2	3	1	1	1	1	3	1	

	(3/2/1 ir		O / PSO Mapping of correlation, 3-strong	g, 2-medium, 1-weak))
Cas		Pro	gramme Specific Out (POs)	come	
Cos	CO1	CO2	CO3	CO4	CO5
PSO1	2	2	3	2	1
PSO2	1	1	2	3	2
PSO3	2	2	1	1	1

Course Assessment Methods
Direct
1. Continuous Assessment Test I, II & Model
2. Assignment
3. End Semester Examinations
Indirect
1. Course End Delivery

	Content of the Syllabus		
	Fundamentals of spectroscopy	Periods	15
Unit - I	Electromagnetic spectrum: Electromagnetic radiation - pro interaction of light with matter - types of spectrosco spectroscopy -Absorption and Emission spectra.		
	UV And IR spectroscopic techniques	Periods	15
Unit - II	UV-Visible spectroscopy - Principle, instrumentation spectrophotometer. Infrared spectroscopy - principle, in monochromator - cell - sampling techniques – detector and r	nstrumentation	
	Atomic absorption and emission spectroscopic techniques	Periods	15
Unit - III	Flame Spectroscopy, Atomic Absorption Spectroscopy instrumentation and application. Luminescence Sp Spectroscopy: Principle, theory, instrumentation and applica	ectroscopy,	iple, theory, Fluorescence
	Electro analytical methods	Periods	15
Unit - IV	Polarography - principle - concentration polarization- dr advantage and disadvantage - convection, migration and c equation(derivation not needed) and its significance - Ar uses.	diffusion currer	ts - Illkovic
	Thermo analytical methods	Periods	15
Unit - V	Principles and instrumentation thermo gravimetric analysis analysis - characteristics and curves - factors affecting TGA oxalate monohydrate and silver nitrate- thermometric applications.	A and DTA cur	ves- calcium
	Total Periods		75

Text	Books
1	Gopalan .R, Elements of analytical chemistry, Sultan Chand, 2009.
2	Kaur, Instrumental methods of chemical analysis.
Refer	ences
1	Khopkar S.M, Analytical Chemistry, New Age International, 2006.
2	Skog.A and West .M, Fundamentals of analytical chemistry, Saunders College Publications, 2004.
3	Sharma B.K, Instrumental methods of chemical analysis God Publications, 2007.
4	Usharani. S, Analytical Chemistry, Macmillan, 2008.
E-Re	ferences

MONEN EMPONERILENT	VIVEKANANI	OHA COLLEGE OF AR (AUTONO) Elayampalayam, Tiruc	MOU	S)			OR WOM	TÛ	ISO 9001:2008 WRheinland ISO 9001:2008 INVESTIGATION ISO 9001:2008						
Programme	M.Sc	Programme Code			PCI	H	Regulati	ons 2	2020-2022						
Department	(Chemistry				Semester	r		2						
Course Code	Co	ourse Name	per		eek	Credit			Marks						
			L	Т	Р	С	CA	ESE	Total						
20P2CHE03	Elective: Electrochemistr	ry and Photochemistry	5			04	25	75	100						
Course Objectives	electrochemistry	he basic concepts electr and electrochemical cells nrich the students knowled	s. 3.	То	acqu	ire knowl	edge abou								
POs		PROGRA	MM	E ()UT(COME									
PO 1		strating comprehensive known dergraduate programme of st		and	unde	erstanding o	of one or m	ore disc	ciplines that						
PO 2	Ability to express	thoughts and ideas effective confidently share ones views a	ely in					e with c	others using						
PO 3		y analytic thought to a body e basis of empirical evidence							e arguments						
PO 4		plate from what one has learn ems rather than replicate curr			-	-									
PO 5	arguments of other	e the reliability and relevan s analyse and synthesise data	from a	var	iety of	sources dra	aw valid Co	nclusior	18.						
PO 6		and capability for asking rele to recognise cause and effect			-				-						
PO 7		ectively and respectfully with up and act together as a group													
PO 8	ideas, evidence and	interpret and draw conclusion experiences from an open m	inded	and	reasor	ed perspect	ive.								
PO 9		to lived experiences with self													
PO 10	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data.														
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion. Possess knowledge of the values and beliefs of multiple cultures and a global perspective. Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.														
PO 12															
PO 13							nt about an								
PO 14	inspiring vision bu		hieve t	he v	vision	motivating.			-						
PO 15					how to	b learn that	are necessar	y for pa	hspiring vision building a team who can help achieve the vision motivating. Ability to acquire knowledge and skills including learning how to learn that are necessary for participating a learning activities throughout life through self paced.						

COs	COURSE OUTCOME
CO 1	Students will understand the basic principles of electrochemistry and different types of electrochemical cells.
CO 2	Students will learn about the basic concepts of photochemistry and their importance in various fields.
CO 3	Students will apply their knowledge of photochemistry in the process taking place in biosystems.
CO 4	Students will analyze the various electrokinetic processes.
CO 5	Students will evaluate the theories of electrical double layer theories.
Pre-requisites	

Г

					KN	OWLE	EDGE	LEVE	LS									
1.	Reme	mberin	n g, 2.U	ndersta	nding,	3.App	olying,	4.Ana	lyzing	, 5.Eva	luating	g, 6.Syı	nthesiz	ing				
		(21211 •						/appir	-	<u> </u>	• 1	1)						
		3/2/11	naicat	es the st		1 OI CO	rrelati	on, 3-s	-		1um, 1	-weak)						
Co	OS			1	KLs				PO									
CC	01				2				PO PO				2					
									PO				5					
CC) 2				2		-		PO				5					
									PO				4					
CC) 3				3				PO				6					
									PO				2	,				
CC)4				4				PO	8			4					
	CO 5			-			- PO 9					1						
) 5		5 PO 10			5			3									
PS	PSOs			1	KLs				PO				3					
									PO 1				2					
PSO					3				PO				1					
PSO				4				PO 14			PO 14 PO 15				6 3			
PSO	53				1		O Ma	nnina	PO	5			3	1				
		(3/2/1 i	ndicat	es the st					trong	, 2-med	ium, 1	-weak))					
60						Pro	gramn	ne Out	come	(POs)								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15			
CO1	CO1 3 2 1 1 1 1 1 2 2 2 3 2 1 2								2									
CO2	CO2 3 2 1 1 1 1 1 2 2 2 3 2 1								2									
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3			
CO4	CO4 1 1 2 2 3 1 1 3 1 2 2 1 1 1 2								2									
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1			
	·	(3/)/1	lindia	ates the			SO Ma		rong	modi	um 1 u	vook)						
		(J/2/1)		nes me	sucingu	1 01 00	inciatio	m, 5-8t	rong, i	2-meull	1111, I-V	veak)						

Con		Pro	gramme Specific Out (POs)	come	
Cos	CO1	CO2	CO3	CO4	CO5
PSO1	2	2	3	2	1
PSO2	1	1	2	3	2
PSO3	2	2	1	1	1

Course Assessment Methods
Direct
 Continuous Assessment Test I, II & Model Assignment End Semester Examinations
Indirect
1. Course End Delivery

	Content of the Syllabus									
	Electro chemistry - I	Periods	15							
	Introduction to electrochemical cells-Types-Chemical	cells with	and without							
	transferences-Concentration cells- types- electrode con-		•							
Unit - I	concentration cells - with and without transferences - liq									
	derivation- Electrical double layer, theories of double layer									
	Electroosmosis – electrophoresis - Diffusion, Streaming and electro-capillary phenomena, electro-capillary curve–electro									
	noise.		ettoenennear							
	Electro chemistry - II	Periods	15							
	Debye - Huckel theory of inter-ionic attraction, ionic atm	A								
	relaxation and - phoretic effects, Derivation of Debye-Huckel-Onsagar equation and its									
Unit - II	validity for dilute solutions at appreciably concentrated solutions. Debye-Falkenhagen									
	and Wein effects. Mean ionic activity coefficients and their determination. Debye –									
	Huckel Bronsted equations - Derivation of Debye-Huckel limiting law, Quantitative and qualitative verification, ion association and Bjerrum theory.									
	Photochemistry	Periods	15							
	Absorption of light and nature of electronic spectra, e	lectronic trans	ition, Frank-							
	Condon principle, selection rules, photodissociation, pred									
	reactions: photoreduction, photo-oxidation, photodin		hotochemical							
Unit - III	substitution, photoisomerization – transition metal complexes - photochemistry of									
	environment: Green house effect. Photo physical phenomena: Electronic structure of molecules molecular orbital electronically excited singlet states designation based on									
	molecules, molecular orbital, electronically excited singlet states, designation based on multiplicity rule, life time of electronically excited state, construction of Jablonski									
	diagram. Stern-Volmer equation, critical energy transfer									
	efficiency, examples and analytical significance, bimolecula									
Unit - IV	Organic Photochemistry	Periods	15							

	Fundamental concepts - Photooxidation reaction (Formation of Peroxy compounds) – Photoreduction of ketones and enones, Norrish type I and II reactions-Photochemistry of Alkenes, Dienes and Aromatic compounds - Photoisomerisation – Cis and Trans isomerization - Photoaddition reaction-Paterno-Buchirreaction-Barton reaction Photo– Fries rearrangement and photorearrangement of 2,5-Cyclohexadienones.							
	Applied Photochemistry	Periods	15					
 Unit - V Photochemistry reaction in the atmosphere - oxygen and ozone - nitrogen oxide chlorofluoro carbons - organic compounds - chemistry of vision – photography photosensitisers-ultraviolet screening agents - optical bleach – photochronism photoimaging - photochemistry of polymers - Photo polymerization: imaging, curing photodegradation and photostabilization–photosynthesis - photochemistry of excited redox reactions- solar energy conversion and storage. 								
	Total Periods 75							

Text	Text Books							
1	K. K. Rohatgi - Mukharjii, Wiley Eastern., Fundamentals of Photochemistry, New age international., P							
1	Ltd., New Delhi 2011							
2	S. Glasstone, D. Van Nostrand., An introduction to Electrochemistry., Affiliated East west press Pvt., Ltd., New Delhi, 2004							
3	Gurdeep Raj, Advanced Physical Chemistry, Go Publishing House.1999							
4	Jagdamba singh, Jaya singh, Photochemisty & Pericyclic Reaction, New age international publishers 2012							
Refe	rences							
1	M.S Yadav Electrochemistry- Anmol Publication Pvt Ltd. New Delhi, 2011							
2	J.G.Calverts & J.N.Pitts - An introduction to Photochemistry, New age international p Ltd., New Delhi.							
2	Wells.							
E-Re	ferences							
1	http://www.engr.uconn.edu/~jmfent/CHEG320_electrochemistry%20lectures.pdff33079							
2	https://web.stanford.edu/group/burnslab/meetings/13_01_24_QOphotochemistry.pdf							

Model Enpoyeentitie	VIVEKANANI	DHA COLLEGE OF AR' (AUTONO) Elayampalayam, Tiruc	MOU	S)			OR WOMI	T	ISO 8601-2008 White index CENTER D			
Programme	M.Sc	Programme Code			PC	H	Regulati	ons	2020-2022			
Department	(Chemistry				Semester	ſ		2			
Course Code	Co	pe		eek	Credit			um Marks				
20P2CHE04	Elective: Organic Spectro	L 4	Т	Р	C 04	CA 25	ESE 75	2 Total 100				
Course Objectives	To enable the students to identify the organic compounds. Acquire the fundamentals and principles of spectroscopic techniques. Enhance the knowledge in mass, NMR, IR spectroscopy.											
POs		PROGRA	MM	E (DUT	COME						
PO 1		strating comprehensive known dergraduate programme of st		and	unde	erstanding o	f one or m	ore dis	ciplines that			
PO 2		thoughts and ideas effective confidently share ones views						e with	others using			
PO 3		y analytic thought to a body ne basis of empirical evidence							e arguments			
PO 4		plate from what one has learn ems rather than replicate curr										
PO 5	arguments of other	e the reliability and relevan s analyse and synthesise data	from a	vari	iety of	f sources dra	aw valid Co	nclusio	ns.			
PO 6		and capability for asking rele to recognise cause and effect										
PO 7	•	fectively and respectfully with up and act together as a group					•					
PO 8		interpret and draw conclusion l experiences from an open m		-		-		d critica	ally evaluate			
PO 9		to lived experiences with self										
PO 10		CT in a variety of learning s information sources and use a					•		te and use a			
PO 11	Ability to work in through to complete	dependently, identify appropr	iate re	sour	ces re	equired for a	a project an	d mana	ige a project			
PO 12		of the values and beliefs of n	nultipl	e cul	ltures	and a globa	l perspective	e.				
PO 13	-	e moral ethical values in con- nultiple perspectives and use		-			-	argumo	ent about an			
PO 14		pping out the tasks of a team ilding a team who can help ac			-		-	ion for	mulating an			
PO 15	Ability to acquire l	nowledge and skills including s throughout life through self	g learn	ing l				y for pa	rticipating			

COs	COURSE OUTCOME
CO 1	Students will understand the basic principles of UV visible spectroscopy.
CO 2	Students will learn about the basic concepts of IR spectroscopy.
CO 3	Students will apply their knowledge on interpretation of mass spectrum.
CO 4	Students will analyze the chemical shift in molecules using NMR.
CO 5	Students will evaluate the types of spectra.
Pre-requisites	

KNOWLEDGE LEVELS															
1.R	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing														
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Co	CosKLsPOsKLs														
	3				IXL5				PO				5		
CO	1				2				PO				2		
	-								PO				2		
CO	2				3				PO	4			1		
СО	2				2				PO	5			1		
	3				Z				РО	6			5		
СО	4			1					PO	7			3		
	7								PO				2		
СО	5		4				PO 9			1					
	-		·				PO 10				3				
PSC)s		KLs				PO 11				4				
DCO	1		2				PO 12 PO 13				6 5				
PSO PSO			3 4				PO 13 PO 14				1				
PSO			1				PO 15				4				
150	5					CO/P	O Mai	Mapping +							
	((3/2/1 i	ndicat	es the st			-		trong	, 2-med	ium, 1	-weak)			
~~						Pro	gramn	1e Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	3	3	2	2	1	2	3	2	2	1	1	1	2	1
CO2	1	2	2	1	1	1	1	2	1	3	2	1	1	1	2
CO3	1	3	3	2	2	1	2	3	2	2	1	1	1	2	1
CO4	1	2	2	3	3	1	1	2	3	1	1	1	1	3	1
CO5	2	1	1	1	1	2	2	1	1	2	3	1	2	1	3

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Cas	Programme Specific Outcome (POs)									
Cos	CO1	CO2	CO3	CO4	CO5					
PSO1	2	2	3	2	1					
PSO2	1	1	2	3	2					
PSO3	2	2	1	1	1					

Course Assessment Methods					
Direct					
1. Continuous Assessment Test I, II & Model					
2. Assignment					
3. End Semester Examinations					
Indirect					
1. Course End Delivery					

	Content of the Syllabus									
	UV Visible Spectroscopy	Periods	15							
Unit - I	Unit - IFrank-condon principle, Types of electronic transitions, Chromophores & Auxochromes, absorption and intensity shifts, Factors influencing positions & intensity of absorption bands, Absorption spectra of dienes, polyenes & unsaturated carbonyl compounds, Woodward - Fieser rules.									
	IR Spectroscopy	Periods	15							
Unit - II	Unit - IIVibrational frequencies & factors affecting them, identification of functional groups Finger Print Region, Significance of Far IR region.									
	Mass Spectrometry	Periods	15							
Unit - III	Principle - EI, CI & FAB - Base peak, isotopic peaks, metastable peak, parent peak, Fragmentation - Nitrogen, even electron rule and pattern, McLafferty rearrangement, Retro – Diel's Alder reaction fragmentation pattern of hydrocarbons, alcohols, aldehydes and ketones.									
	NMR Spectroscopy	Periods	15							
Unit - IV	Basic principles of NMR experiments - CW & FT NMR - ¹ H NMR - Chemical Shift & Coupling constant - Factors influencing Proton Chemical Shift & Proton - Proton Coupling constant, AX & AB spin system - Spin decoupling - Nuclear Overhaust effect - Chemical exchange. ¹³ C NMR chemical shift & factor affecting ¹³ C Chemical shift.									
	Identification of organic compounds	Periods	15							
Unit - V	Identification of organic molecules using UV, IR, NMI techniques.	R and Mass s	pectroscopic							
	Total Periods		75							

Text	Books					
1	Finar .I.L, Organic Chemistry, Vol-I&II, Fifth Edition, ELBS Publication, 2006.					
2	Sharma. Y.R, Elementary Organic Spectroscopy, Fifth Edition, S. Chand Publication, 2013.					
3	Jag mohan, Organic Spectroscopy: Principles and Applications, Second Edition, Alpha Science International Ltd., Harrow, U.K.					
Refe	rences					
1	Dyer.J, Applications of Organic Spectroscopy, Prentice & Hall of India Pvt Ltd., NewDelhi, 1980.					
2	Mukerjee.S.M & Singh.S.P, Organic Reaction Mechanism, McMillan India Ltd., Chennai, 1990.					
3	3 Kemp. W, Organic Spectroscopy, Mcmillan Ltd., 2001.					
E-Re	ferences					

QP CODE-20P1CH01

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	CONCEPTS OF ORGANIC CHEMISTRY AND STEREOCHEMISTRY	Ι

Time: 3 Hr.

Max.Marks : 75

Section A Answer all questions (20 x 1 = 10)

1	Prec	lict the IUPAC name of the following c	compo	und.	K1	CO-1			
	A	1-cyclohexyl-4-isothiocyanato- benzene	В	1-cyclohexyl-4-thiocyanato-benzene					
	C	4-cyclohexyl-1-isothiocyanato- benzene	D	4-cyclohexyl-1-thiocyanato-benzene					
2	Whi	K 1	CO-1						
	A	Heterocyclic containing N & S and antiaromatic	В	Heterocyclic containing N & S and aromatic					
	C	Heterocyclic aromatic containing two N atoms	D	Alicyclic containing two nitrogen					
3.	Syd	K 1	CO-1						
	A	six-membered, pseudo-aromatic heterocyclic molecule	В	five-membered, pseudo-aromatic heterocyclic molecule					
	C	six-membered, aromatic heterocyclic molecule	D	five-membered, aromatic heterocyclic molecule					
4	An	An example of homoaromatic compound is							
	A	cycloheptatrienyl cation	В	tropylium cation	K1	CO-1			
	C	cyclopropenyl cation	D	cyclooctatrienyl cation	¢				

5		ch of the following reaction coordinat Me ₂ Cl + OH ⁻ > PhCMe ₂ O			K 1	CO-2
	A	Energy Reaction Co-ordinate	B	Energy Reaction Co-ordinate		
	С	Energy Reaction Co-ordinate	D	None of the above		
6	Whie	ch carbocation is the most stable?		1	K 1	CO-2
	A		B			
	С		D			
7	Whic	ch one among the following carbocati	ons ha	s the longest half-life?	K 1	CO-2
	A	⊳–ċ–⊲ ∠	В			
	C	C→-t̄-	D	H ₃ C-¢-CH ₃ CH ₃		
8	Whic	ch of the following method can be use	ed to de	etermine the reaction mechanisms?	K1	CO-2
	A	Intermediate trapping and cross experiments	В	Isotopic labelling		
	C	stereo chemical evidence	D	All of the above		

9		ch of the following compound shows eous ethanol?	the co	prrect decreasing order of solvolysis with	K1	CO-3
	I	$\mathbf{x} = \mathbf{x}$ \mathbf{x} \mathbf{x}	ÍII	. X IV. X		
	A	III > II > I > IV	B	III > II > IV > I		
	C	II > III > IV > I	D	III > I > IV > II		
10	Exa	mples of ambient nucleophile and amb	ient su	bstrate are, respectively	K1	CO-3
	A	Thiocyanate ion and 1,3- dichlorobutane	В	Nitrate ion and 1,3-dimethylbutane		
	С	Thiocyanate ion and 1,3- dimethylbutane	D	Nitrate ion and Thiocyanate ion		
11	The condition for aromatic nucleophilic aromatic substitution reaction is/are					CO-3
	A	electron-poor aromatics	В	good nucleophiles		
	C	good leaving group	D	all of the above		
12	is a method for producing 2-aminopyridine derivatives by the reaction of pyridine with sodium amide					CO-3
	A	Gattermann reaction	В	Chichibabin reaction		
	C	Gattermann Koch reaction	D	Reimer – Tiemann reaction		
13	Whi	ch is most reactive in electrophilic sub	stitutio	on?	K1	CO-4
	A	CH ₂ CH ₃	B	OCH3		
	С	O U CCH ₃	D	CI		
14		ch is obtained as the main mononitration butyl-3-methoxybenzene) with HNO ₃ -	-	duct upon reaction of <i>m-t</i> -butylanisole 4?	K1	CO-4
	A	O ₂ N O ₂ N OCH ₃	В	O ₂ N OCH ₃		

	C	C(CH ₃) ₃	D	C(CH ₃) ₃		
		\downarrow		NO ₂		
		OCH3		✓ OCH ₃		
		NO ₂				
15	Whi	ch of the following statements regardir	ng eleo	ctrophilic aromatic substitution is wrong?	K 1	CO-4
	Α	Acetyl and cyano substituents are	В	Alkyl groups are activating and <i>o</i> , <i>p</i> -		
	~	both deactivating and <i>m</i> -directing.	_	directing.		
	C	Ammonio groups are <i>m</i> -directing	D	Chloro and methoxy substituents are		
		but amino groups are and <i>o</i> , <i>p</i> -directing.		both deactivating and <i>o</i> , <i>p</i> -directing.		
16	An e	example of Michael addition reaction is	S		K1	CO-4
	A	Stork enamine reaction	В	Friedel craft acylation		
	C	Ziegler alkylation	D	Chichibabin reaction		
17	Whi	ch of the compounds below exists as o	nly th	ree stereoisomers?	K 1	CO-5
	A	1,4-dibromobutane	B	2,3-dibromobutane		
	C	2,3-dibromopentane	D	1,1-dibromocyclopentane		
18	Ena	ntiomers are			K 1	CO-5
	A	mirror images and optically active	B	optically inactive compounds		
	C	stereoisomers	D	both A & C		
19	The	K 1	CO-5			
	A	verted to stereoisomerically distinct pro regioselective	B	chemoselective		
	C	stereospecific reaction	D	all of the above		
20		•		in CH ₂ Cl ₂ . Which statement concerning	K1	CO-5
	this					
	Α	The product is optically inactive	В	The product is optically inactive		
		because it is a racemic mixture of enantiomers.		because it is meso		
	C	The product is optically inactive	D	The product is optically inactive		
		because it does not possess any		because it is a racemic mixture of		
		chirality centers.		diastereomers.		
		See Answer All qu	ction] estion			
21	A	Predict the aromatic, non-aromatic a			K2	CO-1
		compounds. (i) cycloheptatriene		yclobutadiene (iii) cyclooctatetrane		
		(iv) cyclopentadienyl anion (v) pyr		,		
		(iv) cyclopentacienyi amon (v) pyr	Tunie			

		OR				
	В	Explain Homoaromaticity and Anti aromaticity with examples	K2	CO-1		
22	Α	Give the order of stability of following carbocations and justify it.				
		(i) tropylium ion (ii) Benzyl cation (iii) t-butyl carbocation				
		(iv) Isopropyl carbocation (v) di-t- butyl carbocation				
		OR				
	В	Explain the microscopic reversibility with example?	K2	CO-2		
23	A	Explain S _N i Mechanism.	K2	CO-3		
		OR				
	В	Explain Gattermann reaction, Gattermann Koch reaction with mechanism	K2	CO-3		
24	A	Give the mechanism of electrophilic substitution reactions	K2	CO-4		
		OR				
	В	Explain the concept of orientation and reactivity using disubstituted benzene.	K2	CO-4		
25	Α	Explain regioselective transformation with examples.	K2	CO-5		
		OR				
	В	Analyse the conformations of di-substituted cyclohexane.	K2	CO-5		
	b	Section C Answer ANY THREE Questions (3 x 10 = 30)				
26		Explain with example about effect of aromaticity on band length, resonance energy and induced ring current.	K3	CO-1		
27		Explain stability, structure and generation of carbenes and nitrenes ?	K4	CO-2		
28		Explain about the NGP in nucleophilic substitution reactions	K5	CO-3		
29		Explain the mechanism of Stork Enamine reaction and Friedal Craft acylation of olifinic carbon.	K4	CO-4		
30		Explain the optical inactivity of meso tartaric acid using Fischer, Newmann and Sawhorse projection formulas?	K3	CO-5		

QP CODE-20P2CH04

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	ORGANIC REACTION MECHANISM	II

Time: 3 Hr.

Max.Marks : 75

Section A Answer all questions (20 x 1 = 20)

1	(R)-3	-bromo cyclopentane reacts with Bra	2/CCl ₄	to form two products, y & Z, Y is not	K2	CO-1
	optic	ally active. What is the structure of Y?	?			
		$Br^{S^{*}} \xrightarrow{Br_{2}/CCl_{4}} Y + Z$				
	A		В	Br Br Br		
	С	Br Br	D	Br		
2	Com	plete the following reactions:		1	K1	CO-1
	A		B			
	С		D			
3.	Whic	h of the following equations does not	show	the correct main products?	К3	CO-1

	A $H_2O \xrightarrow{H_2SO_4}$	B	+ HCI AcOH		
	C C_{CH_2OH} + $H_2 \longrightarrow C_{CH_3}$ + $H_2 \longrightarrow C_{CH_3}$	D	$Me - Me + H_2 \xrightarrow{Pd/CaCO_3/Pb} Me Me$		
4	Which combination gives exclusive produce $\mathbf{C}\mathbf{H}_3$	ct as a	н н result of addition reaction?	K 1	CO-1
	A Symmetrical reagent + unsymmetrical substrate	B	$Br_2 + (Z)$ but-2-ene		
	C Symmetrical reagent + symmetrical substrate		all of the above		
5	Which of the following statements regarding	ng the	E1 mechanism is wrong?	K3	CO-2
	A Reactions by the E1 mechanism are unimolecular in the rate- determining step.	B	Reactions by the E1 mechanism are generally first order.		
	C Reactions by the E1 mechanism usually occur in one step.	D	Reactions by the E1 mechanism are multi-step reactions.		
6	Which is the main product of the following	g react		K 1	CO-2
	A A NaOEt	B			
	OEt				
	c	D			
7	Which is the main product of the following HCO_2H	g react	ion?	K2	CO-2
	A	B			
	c	D	Сно		
8		nation CH ₃ O	reaction.	K2	CO-2

	A		B	ci—		
	С		D	Cl		
)	Α	rearrangement the hydrogen	, alky	l or aryl group in a carbocation migrates	K1	CO-3
	from	one carbon to a neighboring carbon re	7			
	A	Martius rearrangements	В	Ireland-Claisen		
	С	Wagner-Meerwein	D	Baeyer – Villiger		
10	R	ict the product of Martius rearrangeme	ents		K4	CO-3
	A	NH ₂ R	В	NH ₂ R		
	С	Both A & B	D	None of the above		
11	Whic	K 1	CO-3			
	A	lized enolate (silyl ketene acetal) form Ireland-Claisen	B	Claisen Rearrangement		
	C	Cope Rearrangement	D	all of the above		
12		ch reaction uses peracids for the conve			K4	CO-3
14		۲.		•	174	0-3
	A	Von – Richter	B	Baeyer – Villiger		
	С	Stevens	D	Neber		
13		reaction which involves the reaction be oduce pyrimidones under acidic condi-		n β-keto ester, an aryl aldehyde, and urea s reaction.	K 1	CO-4
	Α	Vilsmeyer formylation	В	Negishi		
	С	Biginelli	D	Luche		
4	Duad	$\stackrel{\scriptstyle \perp}{}$ ict the product of the following reactio	n.		K2	CO-4

)($ \qquad \qquad$				
	A	$\sim \sim $	B			
	С	$\rightarrow - $	D	All of the above		
15	Com	plete the following stille reaction.		1	K4	CO-4
		R'—X + Y ─────────	R'—R	+ Z		
	Α	Y=XSnBu ₃ & Z=RSnBu ₃	В	Y=XPtBu ₃ & Z=RPtBu ₃		
	С	Y=RSnBu ₃ & Z=XSnBu ₃	D	None of the above		
16	Pred	lict the Steps Y and Step Z in the follo	owing (Cadiot–Chodkiewicz reaction	K1	CO-4
	R——	$= H \xrightarrow{B} R \xrightarrow{=} R^{-} R^{-} \xrightarrow{R^{-}} R \xrightarrow{=} R^{-} \xrightarrow{R^{-}} R^{-} \xrightarrow{R^{-}} R^{-} \xrightarrow{R^{-}} R^{-} \xrightarrow{R^{-}} R^{-} \xrightarrow{R^{-}} \xrightarrow{R^{-}} R^{-} \xrightarrow{R^{-}} \xrightarrow{R^{-}} R^{-} \xrightarrow{R^{-}} R^{$	—Cu -	Step-Y		
	A	X = Oxidative addition & Y=	В	X = Oxidative addition & Y =		
	0	Reductive elimination		Reductive addition		
	C	X = Oxidative addition & Y = Oxidative elimination	D	X = Reductive addition & Y= Reductive elimination		
17	N-B	romosuccinimide is used for substitut	tion of l		K1	CO-5
	Α	α-carbon to carbonyl	В	vinylic		
	С	allylic	D	all of the above		
18	The	reagent DCC is used as	à	L	K2	CO-5
	Α	oxidising agent	В	reducing agent		
	C	dehydrating agent	D	none of the above		
19		nium dioxide is mainly used to oxidiz ble bond to form allylic hydroxy deriv			K2	CO-5
	Α	α-methylene	В	β-methylene		
	C	carbonyl	D	terminal		
20	The	Wilkinson catalyst is			K2	CO-5
	Α	[RuCl(PPh ₃) ₃]	B	[PdCl(PPh ₃) ₃]		
	С	[RhCl(PPh ₃) ₃]	D	[ReCl(PPh ₃) ₃]		

		Section B Answer All questions (5 x 5 = 25)		
21	Α	Addition reaction of alkenes leads to trans product. Why?	K2	CO-1
		OR		
	В	Write a note on hydroboration.	K2	CO-1
22	Α	Discuss E1CB mechanism.	K2	CO-2
		OR		
	В	State and explain Hoffman and Saytzeff rule.	K 1	CO-2
23	A	Write a notes on DeLa mare rearrangement.	K1	CO-3
		OR		
	В	Discuss the Neber rearrangement.	К3	CO-3
24	Α	Explain Biginelli reaction.	K1	CO-4
		OR		
	В	Write a notes on Pauson-Khand reaction	K4	CO-4
25	Α	Explain the role of AlCl ₃ in Friedal Craft's reaction and Fries rearrangement.	K2	CO-5
		OR		
	В	Write the application of DDQ.	K4	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain the following addition reaction with mechanism:	K1	CO-1
		(i) Simmon-smith reaction (ii) Wittig-Horner reaction		
27		Give the mechanism of Cope elimination and Hoffmann degradation.	K2	CO-2
28		Explain Demyanov and Smiles rearrangement.	K2	CO-3
29		Explain the mechanism of Luche and Suzzuki reactions.	K2	CO-5
30		Explain the application of OsO ₄ and Pb(COOMe) ₄ in organic synthesis.	K1	CO-4

QP CODE-20P1CH02 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN

(Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc., CHEMISTRY	TRANSITION METAL AND NUCLEAR CHEMISTRY	Ι
Time: 2 Urs	May Marka	. 75

Time: 3 Hrs.

Max.Marks: 75

Section A Answer all questions (20 x 1 = 20)

1				gements does not represent the correct order	K5	CO -1
	of	the property stated agai	inst i	it?		
	A	$V^{2+} < Cr^{2+} < Mn^{2+} <$ Fe ²⁺ : paramagnetic behaviour	В	$Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size		
	С	$Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+} :$ stability in aqueous solution	D	Sc < Ti < Cr < Mn: number of oxidation states		
2		among th 1 does not show variabl		llowing contain partially filled d – sub shell idation states.	K4	CO -1
	A	Zn	В	Cd		
	C	La	D	Hg		
3	WI	nich one is of the follow	ving	is the lightest transition element?	K1	CO -1
	Α	Ti	B	Sc		
	C	Fe	D	Hg		
4	•••	has the max	kimu	m number of unpaired electrons.	К3	CO -1
	A	Fe ²⁺	B	Fe ³⁺		
	C	Co ³⁺	D	Co ²⁺		
5	La	nthanide contraction is	caus	sed due to,	K1	CO -2
	A	the appreciable shielding on outer	B	the appreciable shielding on outer electrons by 5d electrons from the nuclear		

		electrons by 4f electrons from the nuclear charge		charge		
	С	the same effective nuclear charge from Ce to Lu	D	the imperfect shielding on outer electrons by 4f electrons from the nuclear charge.		
6	Wl	nich of following radio	K1	CO -2		
	Α	Promethium (Pm)				
	С	Yetterbium (Yb)	D	Samarium (Sm)		
7	Th	e actinides exhibit mor	K2	CO -2		
	A	The 5f orbital's are more spread in place than the 4f orbital's	B	Energy difference between 5f and 6d orbital is less than that of 4f and 5d orbital's.		
	С	Energy difference between 5f and 6d orbital is more than that of 4f and 5d orbital's.	D	Actinides are more reactive than that of lanthanides.		
8	Wl	nich one of these not m	K2	CO -2		
	Α	2	B	8		
	С	20	D	36		
9	On	e atomic mass unit is e	K1	CO -3		
	Α	931.5 eV	B	931.5 erg		
	С	931.5 MeV	D	1931.5 MeV		
10	Ba	ryon contains	K1	CO -3		
	A	1 quarks	В	2 quarks		
	С	3 quarks	D	4 quarks		
11	W/	hich one is related to n	K2	CO -3		
11	A	Binding energy	184			

	С	N/P Ratio	D	All		
12	A	pha particle emission i	К3	CO -3		
	A	Binding energy	B	Nuclear tunnel effect		
	С	Nuclear isomerism	D	Auger effect		
13	Ex	oergic nuclear reaction	К3	CO -4		
	Α	Q = +ve	В	Q = -ve		
	С	Q = 0	D	None of the above		
14	Со	ulomb barrier is due to	K1	CO -4		
	A	Projectile +ve target -ve	B	Projectile –ve target +ve		
	С	Projectile +ve and target +ve	D	None of the above		
15	Ex	citation function relate	K 1	CO -4		
	A	Choice of the nuclear reaction	B	Incoming and outgoing projectile beam		
	С	Both A and B	D	None of the above		
16	Α	fter beta decay parent	K2	CO -4		
	Α	-1	B	+1		
	С	-2	D	No change		
17	Wl	nich one is not a charac	K1	CO -5		
	A	Every step two are more lighter nuclei are produced	B	Every step two are more neutrons are produced		
	С	Nuclear chain reaction happened	D	No radiation formed		
18	Th	e following radioactive	K 1	CO -5		
	Α	N13	B	P32		
	С	C 12	D	016		
19		nich one is a detection terial?	К3	CO -5		
	A	Cloud chamber	B	Geiger-Muller counter		

Write the structure of Write short note or elements with examp Explain about proper	B D er A C (Re C (Re C (Re C (Re) C (All the above5568 years1432 yearsSection BII questions (5 x 5 = 25) P_2 Cl ₈) ²⁻ and (Mo ₆ Br ₈) ⁴⁺ ORolour and magnetic properties of d blockof inner transition elements.ORences of gadolinium break.	K2 K1 K2 K1 K3 K4	CO -5 CO -1 CO - 1 CO - 2 CO - 2 CO - 2 CO - 3
4352 years 8564 years Answ Write the structure of Write short note or elements with examp Explain about proper Write causes and con	B D er A C (Re C (Re C (Re C (Re) C (1432 years Section B II questions (5 x 5 = 25) P_2 Cl ₈) ²⁻ and (Mo ₆ Br ₈) ⁴⁺ OR olour and magnetic properties of d block of inner transition elements. OR tences of gadolinium break.	K1 K2 K1 K3	CO - 1 CO - 1 CO - 2 CO - 2
4352 years 8564 years Answ Write the structure of Write short note or elements with examp Explain about proper Write causes and con	B D er A C (Re C (Re C (Re C (Re) C (1432 years Section B II questions (5 x 5 = 25) P_2 Cl ₈) ²⁻ and (Mo ₆ Br ₈) ⁴⁺ OR olour and magnetic properties of d block of inner transition elements. OR tences of gadolinium break.	K1 K2 K1 K3	CO - 1 CO - 1 CO - 2 CO - 2
8564 years Answ Write the structure of Write short note or elements with examp Explain about proper Write causes and con	D er A (Re 1 co le. ties o sequ	1432 years Section B II questions (5 x 5 = 25) P_2 Cl ₈) ²⁻ and (Mo ₆ Br ₈) ⁴⁺ OR olour and magnetic properties of d block of inner transition elements. OR tences of gadolinium break.	K2 K1 K3	CO - 1 CO - 2 CO - 2
Answ Write the structure of Write short note or elements with examp Explain about proper Write causes and con	er A (Re 1 co le. ties o	Section B Il questions (5 x 5 = 25) P_2 Cl ₈) ²⁻ and (Mo ₆ Br ₈) ⁴⁺ OR olour and magnetic properties of d block of inner transition elements. OR Inner transition elements. OR Inner transition elements. OR Inner transition elements.	K2 K1 K3	CO - 1 CO - 2 CO - 2
Write the structure of Write short note or elements with examp Explain about proper Write causes and con	(Re n co le. ties o sequ	Ill questions (5 x 5 = 25) ${}_{22}$ Cl ₈) ²⁻ and (Mo ₆ Br ₈) ⁴⁺ OR olour and magnetic properties of d block of inner transition elements. OR tences of gadolinium break.	K2 K1 K3	CO - 1 CO - 2 CO - 2
Write the structure of Write short note or elements with examp Explain about proper Write causes and con	(Re n co le. ties o sequ	OR Normal Mo ₆ Br ₈) ⁴⁺ OR Normal Magnetic properties of d block of inner transition elements. OR Hences of gadolinium break.	K2 K1 K3	CO - 1 CO - 2 CO - 2
elements with examp Explain about proper Write causes and con	le. ties o sequ	of inner transition elements. OR Hences of gadolinium break.	K1 K3	CO – 2 CO – 2
elements with examp Explain about proper Write causes and con	le. ties o sequ	of inner transition elements. OR lences of gadolinium break.	K1 K3	CO – 2 CO – 2
Write causes and con	sequ	OR nences of gadolinium break.	K3	CO – 2
Write causes and con	sequ	OR nences of gadolinium break.		
Briefly explain nucles	ar sta	ability.	К4	
Briefly explain nucles	ar sta	ability.	K4	CO^{2}
		•	111	0-3
		OR		
What is semi empiric	al fo	ormula? Explain the terms.	K2	CO – 3
	-			
Write note on nuclear	r isoi		K1	CO-4
		OR	-7 74	
Explain scintillation of	letec	ctor.	K1	CO – 4
What are fissile and f	ertile	e nuclides? Give examples	кл	CO – 5
			112	
Write short note on a	pplic		K 1	CO – 5
Answer ANY	THF	REE Questions (3 x 10 = 30)		
Briefly explain about	gene	eral characteristics of d block elements.	K 1	CO – 1

	xtrac	rtion of thorium	К3	CO – 2
1	Write short note on a Answer ANY Briefly explain about	Write short note on applic Answer ANY THI Briefly explain about gen	What are fissile and fertile nuclides? Give examples. OR Write short note on application of radioactive isotopes. Section C Answer ANY THREE Questions (3 x 10 = 30) Briefly explain about general characteristics of d block elements. Write short note on extraction of thorium.	OR Write short note on application of radioactive isotopes. K1 Section C Answer ANY THREE Questions (3 x 10 = 30) Briefly explain about general characteristics of d block elements. K1

28	Explain i) Binding energy ii) Magic number iii) Meson theory	K2	CO – 3
29	Explain the following detection methods i) cloud chamber ii) scintillation detector	K4	CO – 4
30	Briefly explain the term nuclear fission and nuclear fusion reaction.	K1	CO – 5

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	CHEMICAL BONDING AND COORDINATION CHEMISTRY	Π

Time: 3 Hrs.

Max.Marks : 75

1	Wh	ich of the following molecule	K1	CO-1		
	Α	O ₂	В	Cl ₂		
	С	NaCl	D	SO_2		
2	Wh a)	ich factor is used to determine c) d)	nd is consideredionic	K1	CO-1	
	Á	Electronegativity	В	mass		
	С	size	D	number of atoms bound.		
3	Wh	ich element in periodic table p	K1	CO-1		
	A	Hydrogen	В	Carbon		
	С	Fluorine	D	Helium		
4		ich element in periodic table p prine	K3	CO-1		
	Α	Pb	В	O ₂		
	С	Ba	D	Ag		
5	1	at kind of hybrid orbitals are u lecules?	K2	CO-2		
	Α	sp ²	В	sp ³		
	С	sp	D	d ² sp		
6	Wh	ich one of the following violat	te the oc	tet rule?	K2	CO-2
	Α	AsF ₅	В	NF ₃		

	C	PCl ₃	D	CBr ₄		
7			ectro	ons and four antibonding electrons.	К3	CO-2
	The	prefore it has a bond order of,				
	A	3	B	7		
	C	1	D	2		
8	1	atoms in water molecule adopt we pair of electrons?	hat	kind of geometry if you include the	K2	CO-2
	A	Linear	B	Tetrahedral		
	C	Pyramidal	D	Octahedral		
9	sp3	hybridization involves the hybrid	lizati	on of how many atomic orbitals?	K2	CO-3
	A	3	B	2		
	C	4	D	none 5 theabove		
10	The	geometry of XeF ₄ is f	rom	the VESPR theory	K2	CO-3
	A	tetrahedral	B	angular		
	C	trigonalplanar	D	Square planar		
11	1	w many unpaired electrons are the	К2	CO-3		
	com A	nplex	В	2		
	C	0	D	4		
12		ong field ligands such as CN-		7	K4	CO-3
12			В	uqually produce high spin	N 4	0-3
	A	usually produce low spin complexes and high crystal field splittings.	D	usually produce high spin complexes and small crystal field splittings.		
	C	cannot form low spin complexes	D	usually produce low spin complexes and small crystal field splittings.		
13	Wh	ich one of the following complex	K1	CO-4		
	A	[Pt(NH3)2Cl2] (square planar)	B	[Zn(NH3)2Cl2] (tetrahedral)		
	C	[Cu(CN)2]- (linear)	D	[Cu(NH3)4]2+ (square planar)		
14	Wh	ich one of the following complex	e car	n exhibit cis isomer? a) b) c d	K1	CO-4
	A	[Pt(NH3)2Cl2]	B	[PtCl4]		
	C	[Cu(Cl)2]-	D	[Pt(NH3)4]2+		
15	Wh	ich one of the following complex	es ca	in exhibit transisomer?	K2	CO-4
	Α	[Pt(NH3)2Cl2]	В	[PtCl4]		
	С	[Cu(Cl)2]-	D	[Pt(NH3)4]2+	۵	
16		anometallic chemistry is a branch sessing	n of c	chemistry deals with compounds	K2	CO-4

	Α	Carbon-CarbonBond	B	Metal-Metal Bond		
	C	Metal-CarbonBond	D	Metal-BoronBond		
17		e multiple bond character of the m to the presence of	K2	CO-5		
	Α	Carbon-CarbonBond	B	Metal-Metal Bond		
	C	Hydrogen Bonding	D	Backbonding		
18	Atc	omic states are well described by t	he te	erm symbols of the form	K 1	CO-5
	Α	^{J+1} L _{2S+1}	B	^J L _{2S+1}		
	C	^{2S+1} L J	D	^{2S} L _J		
19	The	e ground state term symbol for Flu	iorin	e (2p5 system) is	K2	CO-5
	A	² P _{3/2}	B	² P _{5/2}		
	С	³ P _{3/2}	D	² S _{3/2}	Č	
20	The	e oxidation state of Ferrocene (Fe	C5H	H5)2) is	K3	CO-5
	A	3+	B	0		
	C	2+	D	4+		
			tion			
21	A	Answer All que State and explain Fajan's rule w			K4	CO-1
21		Suite and explain rujan state w		R	121	
	В	Describe radius ratio rule.	U		K3	CO-1
22	A	Explain hybridization and geom	otru	ofNH3	K3 K2	CO-1 CO-2
	A	Explain hybridization and geon	•	PR	K 2	0-2
	В	What are the failures of VBT.	U		K4	CO-2
23	A	State and explain John Teller di	stort	ion with an axample	K4 K1	CO-2 CO-3
23	A	State and explain John Tener u				0-5
	В	Describe splitting of d-ordbitals		R	K4	CO-3
24	A	Write a note on trans effect with			K4 K3	CO-4
24	A	white a note on trans effect whi		•	CA	0-4
	Б	Diaguna hydrogonation of allog		R	wo	CO-4
25	B	Discuss hydrogenation of alken		с <i>с</i>	K2	CO-4 CO-5
25	A	(i) What is ground term for d2 s(ii) Give selection rule for electron			K1	0-5
				R		
	В	Draw and explain Orgel diagra	m of	f d3 system	K 1	CO-5
		Section Answer ANY THREE Q		tions $(3 \times 10 = 30)$		

26	Write note on (i) Lattice energy (ii) Born-Habercycle	К3	CO-1
27	Explain LCAO method for molecular orbitals inO2.	K1	CO-2
28	Illustrate splitting of d-orbitals in octahedral and Tetrahedral geometry.	K3	CO-3
29	i) Differentiate thermodynamic and kinetic stability.(ii) Write notes on stability constant.	K1	CO-4
30	(i) Derive term symbol for d4 system.(ii) Explain charge transfer spectra with an example.	K2	CO-5

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	GROUP THEORY, KINETICS AND SURFACE CHEMISTRY	Ι

Time: 3 Hrs.

Max.Marks : 75

				Answer all questions (20 x 1 =	20)	
1	Wl	nich one has high	er sy	mmetry?	K4	CO-1
	Α	Square	В	Sphere		
	C	Rectangle	D	Cube		
2	Nu	mber of irreducil	ole re	epresentations in C _{2h} is	K5	CO-1
	Α	2	В	3		
	C	4	D	None of the above		
3	Irre	educible represen	tatio	n is	K1	CO-1
	A	Basic representation	В	Reducible		
	C	Non reducible	D	Both A&C		
4	Po	int group of Benz	zene	is	K5	CO-1
	Α	D _{5h}	В	D _{6h}		
	C	D _{6d}	D	None of the above		
5	Nu	mber of vibration			K5	CO-2
	A	2	В	3		
	C	б	D	9		

6	Nu	mber of faces in o	octal	hedron is	K2	CO-2
	A	6	В	8		
	С	10	D	12		
7	Po	int group of Rhon	nboł	nedral is	K1	CO-2
	Α	C 2/m	В	R 3m		
	С	P 6mm	D	I 23		
8	Na	ture of hybrid in A	AB3	type molecule is	K5	CO-2
•	A	sp ³	B	sp		
	C	dsp ²	D	None of the above		
9		e number of chair ctions are called a	K2	CO-3		
	A	Chain reactions	B	Explosion		
	С	Stationary chain reactions	D	Non stationary reactions		
10	· _	equation is ation	K1	CO-3		
	Α	Tafel	В	Hammett		
	С	Free energy relation	D	None of the above		
11		unimolecular reac activation	K1	CO-3		
	A	One	В	Zero		
	С	Three	D	Five		
12	Th	e theory of pressu	re e	ffects on rate was formulated by	K1	CO-3
	Α	Van't hoff	B	Arrhenius		
	С	Lewis and Randall	D	Eigen		
13	Th	e word catalysis v	vas 1	first used by	K1	CO-4

	Α	Dobernier	B	Thenard		
	С	Berzelius	D	Both A & B		
14	Eo	bs of Arrhenius ir	nterr	nediates is	К3	CO-4
	Α	-U+E'2	B	E ₂		
	С	-U+E ₂ +E' ₂	D	-U+E ₂		
15	If I	PH = 5, the rate of	f enz	zyme catalysed reaction is	K4	CO-4
	A	Increase	B	Decreases		
	С	Moderate	D	No changes		
16	ren	noved by dialysis		yme catalysed reaction is cannot be	K1	CO-4
	Α	Competetive	В	Non competitive		
	С	Uncompetetive	D	Irreversible		
17	Ga	s behaves	in I	Langmuir adsorption isotherm	K2	CO-5
1/	A	Uniform	_ III I B	Ideally	182	
	Π	energetically		licentry		
	С	Non ideally	D	None of the above		
18	Ph	ysical adsorption	is us	sually observed	K2	CO-5
	Α	Mobile surface	В	Inter surface		
	С	Both A & B	D	None of the above		
19	Ad	sorption curves a	re m	athematically expressed as	K1	CO-5
	Α	a=f(T)	B	a=f(T,P)		
	С	a=f(P)	D	P=f(T,A)		
20	pre	essure only		erm is valid over a certain range of	K2	CO-5
	A	Langmiuir	В	Type VII		
	С	Freundlich	D	Type V		
		Angua	r Al	Section B l questions (5 x 5 = 25)		
L		Allswe		1 yucsuuis (5 x 5 – 25)		

21	A	Write briefly about improper axis of symmetry with an example.K-1	K1	CO-1
		OR		
	В	What are the rules of group?	K1	CO-1
22	Α	Derive selection rule for IR spectra using group theory.	K3	CO-2
		OR		
	В	Determine hybrid orbitals in CH ₄ .	К3	CO-2
23	A	Explain the effect of dielectric constant on reaction rate in solution.	K4	CO-3
		OR		
	В	Derive rate constant for fast reaction by using temperature jump technique.	K2	CO-3
24	A	Describe about Bronsted catalysis Law.	K2	CO-4
		OR		
	В	Describe about Vant Hoff and Arrhenius intermediates.	K4	CO-4
25	A	List out the major difference between physical and	K2	CO-5
		chemical adsorption.		
		OR		
	В	Describe the effect of temperature on adsorption.	K2	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Deduce the character table for C_{2v} point group	K5	CO-1
			_	
27		Determine the number of vibrational modes in H ₂ O.	K5	CO-2
00			TZ A	
28		Explain the effect of ionic strength on reaction rate in solutions.	K4	CO-3
29		Explain the effect of substrate concentration, temperature	K2	CO-4
		and pH on enzyme catalyzed reactions.		
30		Discuss briefly about Langmuir adsorption isotherm and	K2	CO-5

QP CODE-20P1CHE01 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme (s)	Title of the Paper	Semester
M.Sc. Chemistry	NANOSCIENCE AND NANOTECHNOLOGY	Ι

Time: 3 Hrs.

Max. Marks : 75

1	W	no coined the word 'nanotechnology	K 1	CO1		
	Α	Eric Drexler	В	Richard Feynmann		
	C	Sumio Tijima	D	Richard Smalley		
2	Na	noscience can be studied with the h	elp of.	•	K2	CO1
	A	quantum mechanics	B	Newtonian mechanics		
	C	macro-dynamics	D	geophysics		
3	Wi	K 1	CO1			
	Α	electron microscope	В	magnetic resonance		
	C	condensation technique	D	mass spectrograph		
4	WI	K1	CO1			
	A	Lycurgus cup	В	Medieval stained glass windows in churches		
	C	Damascus steel swords	D	All of the above		
5	Carbon atoms make type of bond with other carbon atoms.					CO2
	A	covalent	В	ionic		
	C	metallic	D	hydrogen		

6	1	e of the advantages of sol-gel metho wder.	od is a	ble to get uniform and	K1	CO2
	A	Micro size	B	Large size		
	C	Nano size	D	Small size		
7		nat is the general name for the class of tices?	of stru	ictures made of rolled up carbon	K1	CO2
	Α	Nanorods	B	Nanotubes		
	C	Nanosheets	D	Fullerrods		
8	Wl	nile synthesizing the nano cones the	plasm	a temperature is above	K1	CO2
	Α	1000°C	B	1500°C		
	С	2000°C	D	2500°C		
9	Th	e size of a quantum dot is nm.			K1	CO3
	A	5	B	10		
	С	50	D	100		
10	Du	ring DTA (Differential thermal anal	ysis) v	what kind of reference material is used?	K1	CO3
	Α	Chemically active	B	Physically active		
	С	Inert	D	Having catalytic property		
11	Th	ermal analysis is defined as			K2	CO3
	A	Measurement of concentration of materials as a function of temperature	В	Measurement of solubility of materials as a function of temperature		
	С	Measurement of physical properties as a function of temperature	D	Measurement of line positions of crystals as a function of temperature		
12	Gr	aphene is a:			K1	CO3
	Α	wide band-gap semiconductor	B	gapless-band semiconductor		
	C	not a semiconductor but behaves like graphite	D	a narrow bandgap semiconductor		
13	1	nich of the following is the principal nomaterials to differ significantly fro		1 1	K2	CO4

	A	Size distribution	В	Specific surface feature		
	C	Quantum size effects	D	All the above		
14	Wl	hat are the advantages of nano-comp	osite p	packages?	K2	CO4
	A	Lighter and biodegradable	B	Enhanced thermal stability, conductivity and mechanical strength		
	C	Gas barrier properties	D	All the above		
15	Co	ating the nano crystals with the cera	mics i	s carried that leads to	K2	CO4
	Α	Corrosion	B	Corrosion resistant		
	C	Wear and tear	D	Soft		
16			ano pa	articles are used with silica coated iron	K3	CO4
	OX:	ide iron oxide. Magnetic applications	В	Electronics		
	C	Medical diagnosis	D	Structural and mechanical materials		
	C	Medical diagnosis	D	Subclurar and mechanical materials		
17	Th	e genetic code translated the language	ge of		K 1	CO5
	A	Proteins into that of RNA	B	Amino acids into that of RNA		
	C	RNA into that of proteins	D	RNA into that of DNA		
18		nano scale distribution of the	in		K3	CO5
		formance	•••			
	Α	Carbide	В	Tungsten		
	С	Hydrides	D	Nitrites		
19		e synthesized magnetic nano particle ange automatically.	es fror	n have been found to self-	K1	CO5
	Α	Zinc	B	Copper		
	C	Iron	D	Zirconium		
20	Na	no particles target the rare	causin	g cells and remove them from blood.	K3	CO5
	Α	Infection	B	Fever		
	C	Tumour	D	Cold		
			ection			
01		· · · · · · · · · · · · · · · · · · ·		ns (5 x 5 = 25)	V2	CO1
21	A	Write the difference between one a			K2	CO1
	OR					

	В	Sketch the steps involved in nanotech generation.	К2	CO1
22	A	Discuss about the synthesis of nanomaterial by sol-gel method.	K2	CO2
		OR		
	B	Briefly explain the synthesis of nanomaterials using electrodeposition process	K2	CO2
23	A	Explain the thermal gravimetric analysis.	K2	CO3
		OR		
	В	Write the applications of scanning electron microscopy.	K2	CO3
24	A	Discuss the applications of nanoparticles in food and agriculture.	K2	CO4
		OR		
	В	Write note on risks of nanomaterials.	K2	CO4
25	A	What are biopolymers and biomaterials? Explain with an example.	K2	CO5
		OR		
	В	Write short note on; Multilayer films.	K2	CO5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain Indian and global scenario in nanotechnology.	K5	CO1
27		Discuss about the synthesis of nanomaterial by PVD method.	К3	CO2
00			17.4	002
28		What is SAED analysis? Explain with examples	K4	CO3
29		Briefly explain the properties and applications of metal nanocomposites.	K5	CO4
30		Explain the terms; DNA double nanowire, Genetic code and protein nanoparticle.	К3	CO5

QP CODE-20P2CHE03 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

MODEL QUESTION PAPER

Programme(s) Title of the Paper		Semester
M.Sc. CHEMISTRY ELECTROCHEMISTRY & PHOTOCHEMIS		II

Time: 3 Hrs.

Max.Marks :75

1	How	can an electric double layer be for	ned a	round the solid particles of suspensions?	K2	CO-1
	A	The particles are charged as a matter ofcourse	В	As a result of the attractive forces acting between theparticles		
	C	Ions are adsorbed on the surface	D	As a result of the adsorption of a polar substances.		
2	The r	everse ofelectro-osmosis		·	K3	CO-1
	Α	zetapotential	В	Osmosis		
	С	iso-electric point	D	streaming potential		
3	In thi	K1	CO-1			
	А	electrophoreticmobility	В	zetapotential		
	С	polarization	D	Poisson'svelocity		
4	Whic	K2	CO-1			
	Α	Ultracentrifugation	В	Sedimentation		
	С	Gelfiltration	D	Centrifugation		
5	Pick	K3	CO-2			
	Α	0.2 M	В	0.5 M		
	С	0.1 M	D	0.25 M		
6	As th	e ionic strength, μ increases the act	ivity	coefficient(Y)	K2	CO-2
	Α	increases	В	decreases		

	С	neutral	D	None of these		
7	Deby	K 1	CO-2			
	Α	Highconcentration	В	Higher concentration		
	С	Low concentration	D	non-ideal solution		
8	Whic	h ion is kinetically inert?	I		K 1	CO-2
	А	Cr ²⁺	В	Co ³⁺		
	С	Co ²⁺	D	Fe ³⁺		
9	A pho	otochemical reaction is	I		K 1	CO-3
	Α	Catalyzed by light	В	initiated by light		
	С	accompanied with emission oflight	D	used to convert heat energy into light		
		wing products? \swarrow $\stackrel{\text{light}}{\longleftarrow}$ \bigwedge				
	A	A and B	B	C and D		
	С	Aand C	D	B and D		
11	Fluor	K 1	CO-3			
	Α	10 ⁻⁹ to10 ⁻⁷ sec	В	10 ⁻⁸ to10 ⁻⁶ sec		
	С	10 ⁻³ to10 ⁻⁸ sec	D	10 ⁻⁹ to10 ⁻¹ sec	······	
12	Photo	K1	CO-3			
	А	Pressure	В	Temperature		
	С	Free energy	D	All the above		
13	A ph molec	K3	CO-4			
	Α	HOMO-1	В	НОМО		
	С	LUMO	D	LUMO ⁺¹		
14		h of the following reactions conve urated carbonyl compound?	rts an	unsaturated ether to a γ , δ -	K3	CO-4
	Α	Coperearrangement	В	Claisenrearrangement		
	С					
15	The t	ransition in intersystem crossingis			K1	CO-4

	Α	$S_1 \rightarrow T_1$	В	$T_1 \rightarrow S_0$		
	С	$S_0 \rightarrow S_n$	D	$T_1 \rightarrow S_0$		
16	Exam	ples for Non-Equilibration of E	K2	CO-4		
	А	1,3-cyclohexadiene	В	hexane		
	С	Fluvene	D	cyclohexane		
17	Exam	pple for atomicphotosensitizers			K 1	CO-5
	Α	Mercury	В	Nitrogen		
	С	Carbonmonoxide	D	Nickel		
18	Emis	sion occurs at ordinary temperat	ure, the	emitted radiation is also known as	K2	CO-5
	А	Black light	В	Blue light		
	С	Cold light	D	White light		
19	The v	K1	CO-5			
	Α	Below 0.1nm	В	10–200nm		
	С	360–800nm	D	0.1–10nm		
20	Syste	K2	CO-5			
	Α	2-hydroxypropanoicacid	В	hydroxyester		
	С	polyesters	D	polyamides		
		A	Section	n B ns (5 x 5 = 25)		
21	A	K2	CO-1			
<u> </u>	11	Discuss the Chemical cells w	112			
	В		K1	CO-1		
~~~		Explain the Streaming and				
22	A	What do you mean by Debye	K2	CO-2		
	D		170			
	В	Explain the Quantitative and limiting law.	K3	CO-2		
23	Α	Explain the construction of J	ablonski	diagram	K3	CO-3
	В	Write a note on Frank- Cond	K3	CO-3		
24	A	Explain the formation ofpero	oxycomp	oounds.	K4	CO-4
				OR		
	В	Write a note on shote fri	o roarr	angamant	K2	CO-4
25	A	Write a note on photo – frie How will you explain the pho		angement. tizers and chemistry of vision?	K1	CO-5

		OR		
	В	Explain photodegredation and photo stabilisation.	K2	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain the theories of doublelayer.	K4	CO-1
27		Derive the Debye - Huckel theory of inter-ionic attraction and ionicatmosphere.	К3	CO-2
28		What is mean by photochemical reactions and explain photo reduction and oxidation, Photodimerization.	К3	CO-3
29		Explain the Norish type I and norish type II with examples.	K3	CO-4
30		Explain the ultraviolet screening agents, optical bleach and photochronism	K4	CO-5

Monte Institution	VIVEKANANI	DHA COLLEGE OF A (AUTO) Elayampalayam, Ti	NOM	DUS	5)		OR WOMI		ISO 9001-2008
Programme	M.Sc	Programme Code			PO	CH	Regulati	ons	2020-2022
Department	Cł	emistry				Semester			3
Course Code	Cou	rse Name	per	erioc We	ek	Credit			n Marks
			L	Т	Р	С	CA	ESI	E Total
20P3CH06	CORE PAPER Natural Product reactions and R	s, Pericyclic	5			05	25	75	100
Course Objectives	pericyclic reaction	nt to learn about the cons. To learn the relation orn the basic principles	on bet	weer	1 the	e structure and			
POs		PROG	RAM	ME	E OI	UTCOME			
PO 1	Capable of demon	strating comprehensive k ndergraduate programme o	nowle	lge a	and u	understanding of	of one or m	ore di	sciplines that
PO 2	Ability to express	thoughts and ideas effect confidently share ones vie	tively	in w				with	others using
PO 3		y analytic thought to a b ne basis of empirical evide							e arguments
PO 4		blate from what one has leaders rather than replicate of			~ ~ ~	-			
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	mav	varie	ty of sources dra	aw valid Co	nclusic	ons.
PO 6		and capability for asking to recognise cause and eff							-
PO 7	-	ectively and respectfully up and act together as a g					-		
PO 8		interpret and draw conclu l experiences from an oper			-	-		l critic	ally evaluate
PO 9	Critical sensibility	to lived experiences with	self aw	aren	ess a	nd reflexivity o	f both self a	nd soci	ety.
PO 10	- ·	CT in a variety of learning information sources and u	-				-		ate and use a
PO 11	Ability to work in through to complet	dependently, identify apprion.	opriat	e res	ource	es required for	a project an	d man	age a project
PO 12	Possess knowledge	of the values and beliefs	of mul	tiple	cultu	ires and a globa	l perspectiv	e.	
PO 13	-	moral ethical values in a nultiple perspectives and u		-			-	argum	ent about an
PO 14	inspiring vision bu	pping out the tasks of a silding a team who can help	p achie	ve th	e vis	sion motivating.	-		-
PO 15		knowledge and skills inclues throughout life through			ng h	ow to learn that	t are necess	ry for	participating

COs	COURSE OUTCOME
CO 1	Students can learn about the chemical properties and structure of organic compounds like terpenoids, alkaloids, steroids and flavones etc derived from plant materials.
CO 2	Students can understand isolation, characterisation and laboratory synthesis of natural products.
CO 3	Student can know the concept of HOMO and LUMO, and their influence in bond formation.
CO 4	Students study the nature of double bonded compounds and the possible isomer arrived upon their rearrangement.
CO 5	Knowledge of student will be enriched with green chemistry and various types of eco-friendly reactions could be conducted on their own.
Pre-requisites	

					KN	OWLE	DGE	LEVE	LS						
1.R	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing														
	(	3/2/1 i	ndicat	es the s		) / PO / 1 of cor			-	2-med	lium, 1	-weak)	)		
Cos	;			]	KLs				POs	5			KI	_S	
СО	1				2				PO	1			2		
	1				2				PO				1		
CO	2				4				PO				5		
									PO				5		
CO	3				3				PO :				4		
									PO				2		
CO	4				5			PO 7 PO 8				4			
			3				PO 9				1				
CO	5						PO 10				3				
PSO	ia.		KLs					PO 11				3			
								PO 12				2			
PSO					3			PO 13				1			
PSO				4				PO 14					6		
PSO	3				1	CO/P	O Ma		PO 1	.5			3		
	(	3/2/1 i	ndicat	es the s			-		trong,	2-med	lium, 1	-weak)	)		
<b>CO</b> -						Prog	gramn	ne Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO5	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Cas		come									
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	2	2	3	1	3						
PSO2	1	3	2	2	2						
PSO3	2	1	1	1	1						

Course Assessment Methods						
Direct						
1. Continuous Assessment Test I, II & Model						
2. Assignment						
3. End Semester Examinations						
Indirect						
1. Course End Delivery						

Content of the Syllabus											
	Terpenoids and Steroids	Periods	15								
	Terpenes: classification, general structural elucidation,										
Unit - I	chemical degradation and synthesis of $\alpha$ -pinene, campl										
	classification, structural elucidation of cholesterol (synthesis	· · ·	•								
	(synthesis not required), structure and synthetic aspects of es	trone and prog	esterone.								
	Alkaloids and Flavonoids	Periods	15								
	Alkaloids: classification, general structural elucidation, structural elucidation by										
Unit - II	chemical degradation and synthesis of papaverine, quinine, morphine and reserpine.										
	Flavones: introduction and Baker-Venkatraman synthesis - Flavanol: synthesis of										
	quercetin – Isoflavones: synthesis of daidzein.										
	Anthocyanins and Vitamins	Periods	15								
	Introduction to anthocyanins - synthesis of anthocyanins. structure and biological										
Unit - III	applications - uric acid, purine derivatives and xanthine bases Vitamins: introduction to										
	fat and water soluble vitamins, structural elucidation of vitamin B6, vitamin B12, and										
	vitamin K Pericyclic Reactions	Periods	15								
			_								
Unit - IV	Electrocyclic reactions (butadiene-cyclobutene system), cyclo-addition reactions $((4 + 2)$ and $(2+2)$ ) systems, signatropic and cheletropic reactions, use of frontier molecular										
	orbital and correlation diagrams, 1,3 and 1,5 - hydrogen shifts. Signatropic										
	rearrangements: Claisen, Cope and oxy-Cope rearrangement	•	Signatiople								
Unit - V	Strategies for Synthesis	Periods	15								

	Retrosynthetic analysis: synthons and synthetic equivalents, funct interconversion - disconnection approach – one group C-X, two group C group C-C disconnections - chemoselectivity, umpolung - protection and d alcohols, carbonyls, carboxylic acids and amino functional groups	C-X and one					
Total Periods							

Text	Books
1	V.K.Ahluwalia,M.Kidwai,New trends in green chemistry,Second Edition,2007
2	Arun Bahl and B.S.Bahl, Advaced organic chemistry, S.Chand and company, 2009
3	T.W.Graham salomons, Carig B.Fryhle, Organic chemistry, 9th edition, Wiley. 2011.
4	Singh, Jagadamba and L.D.S. Yadav. Advanced Organic Chemistry. Meerut: Pragati Prakashan, 2010
Refe	rences
1	I.L. Finar organic Chemistry, Vol. II, 5th Edition ELBS 1975
2	O.P.Agarwal, Chemistry of Organic Natural products, Goel publication vol I & II
3	M.G. Arora, Organic Photochemistry and Pericyclic reaction,2008
4	C.H.Depuy ,O.SChampman Molecular reactions and Photo-chemistry, Prentice Hall, 1975
5	B.B. Grill, M. R. Willis, Pericyclic reactions, Champan & Hall 1974.
6	Jonathan, Clayden, Nick Greeves, Stuart Warren. Organic Chemistry. New York: Oxford University Press, 2012
E-Re	ferences
1	https://articles.mercola.com/sites/articles/archive/2017/08/28/terpenoids.aspx
2	https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/pericycl.htm
3	https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids
4	www.essentialchemicalindustry.org/processes/green-chemistry.html

Signature of BOS Chairman

HOMEN ENDOWEDNICH	VIVEKANANI	<b>DHA COLLEGE OF</b> A ( <b>AUTO</b> ) Elayampalayam, Ti	NOM	DUS	)		DR WOMI		ISO 90012008 INPheninen De stocarear	
Programme	M.Sc	Programme Code	PCH Regulations 2020-2					2020-2022		
Department	Cl	nemistry				Semester			3	
Course Code	Cou	rse Name		erioc We		Credit	Max	imum	m Marks	
			L	Т	Р	С	CA	ESE	E Total	
20P3CH07	CORE PAPER V Organometallic, Spectroscopy and Chemistry	Solid state,	5			05	25	75	100	
Course Objectives	To gain knowledge about Boron compounds, cages, chains and clusters. To learn elaborately in the field of solid state and bio-inorganic chemistry. To understand the working and application of various analytical tools to deduce crystal structure of solids.									
POs	PROGRAMME OUTCOME									
PO 1		strating comprehensive k ndergraduate programme			and u	understanding of	of one or m	ore dis	ciplines that	
PO 2	Ability to express	thoughts and ideas effect confidently share ones vie	tively	in w				with	others using	
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		plate from what one has le			~ ~ ~	-				
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	mav	varie	ty of sources dra	aw valid Co	nclusio	ns.	
PO 6		and capability for asking to recognise cause and eff								
PO 7		ectively and respectfully up and act together as a gr					-			
PO 8		interpret and draw conclu l experiences from an oper			-	-		l critica	ally evaluate	
PO 9	Critical sensibility	to lived experiences with	self aw	aren	ess a	nd reflexivity of	f both self a	nd socie	ety.	
PO 10	- ·	CT in a variety of learning information sources and u	-				•	evaluat	te and use a	
PO 11	through to complet								ige a project	
PO 12	-	of the values and beliefs		-		-				
PO 13	ethical issue from	Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.								
PO 14	inspiring vision bu	pping out the tasks of a silding a team who can help	o achie	ve th	e vis	sion motivating.	-			
PO 15		knowledge and skills inclues throughout life through			ng h	ow to learn that	t are necessa	ry for j	participating	

COs	COURSE OUTCOME
CO 1	Students have the knowledge of application and properties of non aqueous solvents and formation of liquid and gaseous molecules.
CO 2	Students can able understand the commercial application of Organometallic Chemistry & catalysis.
CO 3	Students are enable to understand the basic of crystal structure, application of the analytical tools like XRD, AAS and PES tools in elucidating three dimensional structure of the inorganic molecules.
CO 4	Students can know the importance of biologically important materials in our body.
CO 5	Students will have enriched knowledge on porphyrin and other bioinorganic molecules.
Pre-requisites	

					KN	OWLE	DGE	LEVE	LS							
1.R				ndersta es the st	CC	) / PO /	/ KL N	lappir	ng		-			ing		
Cos	5			]	KLs				POs	5			KI	LS		
	1				2				PO	1			2			
CO	1				2				PO	2			1			
СО	2				3				PO	3			5			
	2				5				PO				5			
СО	3				2				PO				4			
	_		-						PO				6			
CO	4				2				PO			2 4				
			2				PO 8 PO 9				1					
CO	5					-	PO 10				3					
							PO 11					3				
PSC	)s		KLs					PO 12					2			
PSO	1				3				PO 1	3			1			
PSO				4				PO 14					6			
PSO	3			1				PO 15					3			
	(	(3/2/1 i	ndicat	es the s		CO / P 1 of cor			trong,	2-med	lium, 1	-weak)	)			
COs						Prog	gramn	ne Out	come	(POs)						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2	
CO2	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3	
CO3	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2	
CO4	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2	
CO5	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2	

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Cas		come									
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	2	3	2	2	2						
PSO2	1	2	1	1	1						
PSO3	2	1	2	2	2						

Course Assessment Methods						
Direct						
1. Continuous Assessment Test I, II & Model						
2. Assignment						
3. End Semester Examinations						
Indirect						
1. Course End Delivery						

Content of the Syllabus									
	Boron compounds and Clusters Boron hydrides	Periods	15						
Unit - I	Inorganic chains - rings - cages and clusters - catenation - heterocatenation - intercalation chemistry - one dimensional conductor - isopolyanions - heteropolyanions - borazines - phosphazenes - phosphazene polymers - ring compounds of sulphur and nitrogen -								
	homocyclic inorganic systems - cages - boron cage compound		•						
	clusters - trinuclear clusters - tetranuclear clusters - hexanuclear clusters - structural								
	prediction of organometallic clusters.	1	1						
	Organometallic Chemistry & Catalysis	Periods	15						
Unit - II	Carbon donors - Alkyls and Aryls-preparation and properties. isolobal concept - application to structure of carbonyls Nitrosyls - bridging and terminal nitrosyls, bent and complexes; Chain Carbon donors - Olefins, acetylene and structure and bonding; Cyclic Carbon donors - Metallocer bonding (Ferrocene only). Hydrogenation of olefins (Wilkinsons catalyst); hydroformyl or Rhodium catalysts (oxo process); Oxidation of olefins (Wacker process); polymerization (Zeigler-Natta catalyst) acetylene using Nickel catalyst (Reppe's catalyst); polymer b	(simple and linear nitrosyl allyl complexe ne - synthesis, ation of olefins to aldehydes ; Cyclo oligo ound catalysts.	polynuclear); ls; dinitrogen es - synthesis, structure and s using Cobalt and ketones merization of						
Unit - III	Solid State Chemistry Space lattice - unit cell- crystal systems- elements of syn indices- crystal analysis- XRD - rotating crystal method- p atoms and ions in solids- Electrical properties of solids – E super conductors, theory of super conductivity – defects in so magnetic properties of solids – dia, para, ferro, antiferro an	bowder method and theory, se blids - solid stat	l - packing of miconductors, te electrolytes;						

	Optical properties – solid – state lasers and Inorganic phosp and phase transitions – diffusion coefficient, diffusion interstitial diffusions, formation of spinels and inverse spinels	mechanism,	vacancy and		
	Atomic absorption, emission spectroscopy and Crystal Studies	Periods	15		
Unit - IV	Atomic absorption spectroscopy and flame emission spect flame characteristics - atomizers and burners- interfe applications of AAS and FES. PES –theory of XPS, UP potential-chemical identification of elements – ESCA - Ko shift - UPES, XPS of N ₂ , O ₂ , and HCl-evaluation of vibratic orbit coupling.	PES-evaluation	nentation and of ionization prem-chemical		
	Bio-inorganic Chemistry	Periods	15		
<ul> <li>Unit - V</li> <li>Porphyrin ring system - Metalloporphyrins - Haemoglobin and Myoglobin-structures and work functions - other oxygen carriers - Cytochromes: Structure and work functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulphur proteins - (Non - Haemo iron protein) - Copper oxidizes - Blue copper proteins - Carboxyl peptidase A: Structure, function - Carbonic anhydrase: Inhibition and Poisoning - Corrin ring system - Vitamin B12, In vivo and in vitro nitrogen fixation - Molecular mechanism of ion transport across the membrane - Na and K ion pumps-Chelate therapy-cis-platin.</li> </ul>					
Total Period			75		

Text	Books						
1	U. Malik, G. D. Tuli and R. D. Madan., Selected topics in Inorganic Chemistry, 6th EdnS. Chand & company Ltd., (2005).						
2	B. R. Puri, L. R. Sharma and K. C. Kalia., Principles of Inorganic Chemistry, S. Chand & Co (2004).						
3	R. D. Madan., Modern Inorganic Chemistry, Chand Publishers (2004).						
Refe	rences						
1	J. E. Huheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Edn, Pearson education (2006).						
2	F. A. Cotton, G. Wilkinson., Advanced Inorganic Chemistry, 3rd Edn, John Wiley & Sons, Inc (1972).						
3	G. Raj., Advanced Inorganic Chemistry Vol. I & Vol. II, 6th Edn, Goel publishing house (1999).						
4	G. S. Manku., Theoretical Principles of Inorganic Chemistry, Tata McGraw –Hill Publishing Company Ltd., (Reprint 2001).						
5	R. Chang., Basic principles of Spectroscopy, McGraw Hill Ltd., New York, (1971).						
E-Re	ferences						
1	global.oup.com/ushe/product/boron compounds-9780198502593						
2	https://www.nature.com > subjects						
3	https://www.chemie.uni-hamburg.de/ac/rehder/Lund_BioinorgChem_08.pdf						

Signature of BOS Chairman

HONEL ENPOWERNEN	VIVEKANAN	DHA COLLEGE OF A (AUTO) Elayampalayam, Ti	NOM	DUS	5)		OR WOMI	EN	TÜVRheinland CERTIFIED	ISO 9001:2008 www.tuv.com iD 9109078407
Programme	M.Sc	M.Sc Programme Code PCH Regulations 2020-202							-2022	
Department	Cl	Chemistry Semester 3								
Course Code	Cou	irse Name	per	rioc We	ek	Credit			m Mar	
			L	Т	Р	С	CA	ES	SE 7	Fotal
20P3CH08	CORE PAPER Quantum Chen Thermodynami	nistry and	5			05	25	7:	5	100
Course Objectives	the students to	To impart knowledge in the field of Quantum chemistry with applications. To enable the students to acquire knowledge on statistical thermodynamics. To understand the difference between classical and statistical thermodynamics								
POs		PROG	RAM	ME	E OI	UTCOME				
PO 1		strating comprehensive k ndergraduate programme o			and 1	understanding o	of one or m	ore d	iscipline	es that
PO 2	Ability to express	thoughts and ideas effect confidently share ones vie	tively	in w				e with	n others	using
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		olate from what one has le ems rather than replicate o				_				
PO 5		e the reliability and rele s analyse and synthesise d								in the
PO 6	· ·	and capability for asking to recognise cause and eff				· ·		•••		ng and
PO 7	2	fectively and respectfully oup and act together as a gr					1			
PO 8		interpret and draw conclu d experiences from an oper			-	-		1 criti	ically ev	valuate
PO 9	Critical sensibility	to lived experiences with	self aw	aren	ess a	nd reflexivity of	f both self a	nd so	ciety.	
PO 10		ICT in a variety of learning information sources and u							late and	use a
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.									
PO 12	Possess knowledge	e of the values and beliefs	of mul	iple	cultu	ires and a globa	l perspective	e.		
PO 13	-	e moral ethical values in a multiple perspectives and u		•			•	argui	ment ab	out an
PO 14		pping out the tasks of a tilding a team who can help						ion f	ormulati	ing an
PO 15		knowledge and skills inclu es throughout life through			ng h	ow to learn that	are necessa	ary fo	r partici	pating

COs	COURSE OUTCOME
CO 1	Students will be able to identify wave functions using operators and recognize functions and values.
CO 2	Students will learn to perturbation and variation.
CO 3	Students can learn the concept of chemical potential, fugacity of gases, Activity and activity coefficient
CO 4	Students will learn the Objectives and various functions of Statistical thermodynamics
CO 5	Students acquire deep knowledge about the concept of non equilibrium and applications
Pre-requisites	

#### **KNOWLEDGE LEVELS**

	CO / PO / KL Mapping						
(3/2/1 in	dicates the strength of corre	lation, 3-strong, 2-medium, 1	-weak)				
Cos	KLs	POs	KLs				
CO 1	3	PO 1	2				
COT	5	PO 2	1				
CO 2	2	PO 3	5				
CO 2	2	PO 4	5				
CO 3	2	PO 5	4				
05	2	PO 6	6				
CO 4	2	PO 7	2				
CO 4	2	PO 8	4				
CO 5	2	PO 9	1				
CO 5	2	PO 10	3				
PSOs	KLs	PO 11	3				
PSUS	KL8	PO 12	2				
PSO 1	3	PO 13	1				
PSO 2	4	PO 14	6				
PSO 3	1	PO 15	3				
	CO/PO	Mapping					

COs		Programme Outcome (POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO4	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO5	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
Cas	Programme Specific Outcome (POs)								
Cos	CO1	CO2	CO3	CO4	CO5				
PSO1	3	2	2	2	2				
PSO2	2	1	1	1	1				
PSO3	1	2	2	2	2				

# Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect 1. Course End Delivery

	Content of the Syllabus							
	Quantum Chemistry-I	Periods	15					
Quantum theory: Inadequacy of classical mechanics, Black body RadiatiExperimental results of Black body radiation – Photoelectric effect – De – Bequation – Heisenberg uncertainty principle – Compton effect. Born's interpretatwave function. Operators and commutation relations, Eigen functions and Eigen vQuantum mechanical postulates – Schrodinger equation and its solution to the proof a particle in one and three dimensional boxes, the harmonic oscillator, therotator and Hydrogen atom (Arriving solution for energy and wave function). Theof quantum numbers and their physical significance – Probability distributielectrons. Approximation methods – Perturbation and Variation methods – applieof Variation method to Hydrogen and Helium atom.								
Unit - II	Quantum Chemistry-IIPeriods15Theory of chemical bonding – Born – Oppenheimer approximation – LCAO – MO approximation for hydrogen molecule ion and Hydrogen – Valence Bond theory of Hydrogen molecule. Concept of Hybridization – sp, sp² and sp³ hybridization – Huckel Molecular orbital (HMO) theory for conjugated $\pi$ - system – applications to simple systems (Ethylene and butadiene) – Physical Significance of HMO coefficients. Self consistent field approximation – Hartree and Hartree – Fock Self Consistant field theory – Slater type orbitals – Slater rules.							
	Thermodynamics - I	Periods	15					
Unit - III	Thermodynamics of non-ideal systems - Concept of chemical potential - Gibbs-Duhem equation - Variation of chemical potential with temperature and pressure - Concept of fugacity of gases - Determination by graphical method and from equation of state - Variation of fugacity with temperature and pressure - Fugacity coefficient - Activity and activity coefficient - Variation of activity of a gas with pressure and temperature. Determination of solvent activity by vapour pressure method and Cryoscopic method.							

	Statistical Thermodynamics	Periods	15						
	Objectives of Statistical thermodynamics, concept	of thermodyn	amical and						
	mathematical probabilities, Distribution of distinguishabl								
	particles. Maxwell-Boltzmann, Bose-Einstein and Fern								
Unit - IV	comparisons. Partition Function – Translational, Vibrationa								
	partition Functions. Thermodynamic Functions in terms of p								
	expression for equilibrium constant C. Calculation of Equilibrium Constant from								
	Partition function (isotopic exchange equilibria and dissociation of diatomic molecules)								
	Heat capacities of monoatomic crystals - Einstein s and Debye s theories of heat								
	capacities.								
	Irreversible Thermodynamics	Periods	15						
	Reversible and Irreversible process – Types of irreversibility of process. Postulates of								
	Non-Equilibrium thermodynamics. Entropy production - heat flow and matter flow.								
Unit - V	Progogine's principle of minimum entropy production. Forces, fluxes and Flows -								
	Entropy production of forces and fluxes. Linear laws - Phenomenological law - Onsager								
	reciprocal relation - proof by Microscopic reversibility - El								
	Diffusion. Non-Equilibrium stationary states and Application	ns – Peltier effe	ct.						
	Total Periods		75						

Text	Text Books						
1	Arun Bahl, B. S.Bahl, G. D.Tuli., Essentials of Physical Chemistry, Multicolour Revised Edn, S. Chand and Company Ltd, (2008).						
2	L. K. Nash., Chemical Thermodynamics, 2nd Edn, Addision Wesley Publishing (1976)						
3	P.W. Atkins., Physical Chemistry, 6th Edn, Oxford University Press, (1998)						
4	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014).						
Refe	rences						
1	R. K. Prasad., Quantum Chemistry, Viva Books Private Ltd (2013).						
2	D. McQuarrie., Quantum Chemistry, Viva Books Private Limited (2013).						
3	A. K. Chandra., Introductory Quantum Chemistry, Tata McGraw Hill (1994).						
4	W. J. Moore., Physical Chemistry, Longmann's (1975).						
5	M.C. Gupta., Statistical Thermodynamics, Wiley Eastern Limited (1990)						
6	I. N. Levine, Quantum Chemistry, 4th Edn., Prentice Hall India, (1994).						
7	B. K. Sen., Quantum Chemistry Including Spectroscopy, Kalyani publishers (2004).						
8	S. Glasstone., Thermodynamics for Chemists - East-west Press Pvt.Ltd, (2002).						
9							
E-Re	ferences						
1	www.chemistryexplained.com						
2	http://unicorn.mcmaster.ca/teaching/4PB3/SymmetryLectureNotes2009-Vallance-Oxford-level2.pdf						
3	http://cbc.arizona.edu/~salzmanr/480a/480ants/kinintro/kinintro.html						

HOMEN ENPONERNEN	VIVEKANANI	DHA COLLEGE OF A (AUTO) Elayampalayam, Ti	NOM	DUS	)		DR WOMI		ISO 9001:2008 TOURNEINIAN CENTRIFIC	
Programme	M.Sc	Programme Code			PO	CH	Regulati	ons	2020-2022	
Department	Cl	nemistry				Semester	1		3	
Course Code	Сог	irse Name	per	erioc We	ek	Credit			m Marks	
20P3CHED01	ELECTIVE PA Applied Polym		L 5	Т	Р	C 04	CA 25	ESI 75		
Course Objectives	preparation of To impart unc	To impart the knowledge in the field of polymer chemistry. To impart knowledge in the preparation of syndiotactic, atactic and isotactic polymers using Zeiler-Natta catalyst. To impart understanding in the field of processing of polymers. To explore the applications of various synthetic polymers.								
POs		PROG	RAM	MF	C 01	UTCOME				
PO 1		strating comprehensive k			and 1	understanding of	of one or m	ore di	sciplines that	
PO 2	Ability to express	ndergraduate programme of thoughts and ideas effect confidently share ones vie	tively	in w				with	others using	
PO 3		y analytic thought to a b ne basis of empirical evide							ce arguments	
PO 4		olate from what one has lease the second sec				-				
PO 5	arguments of other	e the reliability and rele s analyse and synthesise d	ata fro	mav	varie	ty of sources dra	aw valid Co	nclusio	ons.	
PO 6		and capability for asking to recognise cause and eff			· ~				-	
PO 7	2	fectively and respectfully up and act together as a g					1			
PO 8		Ability to analyse interpret and draw conclusions from quantitative qualitative data and critically evaluate ideas, evidence and experiences from an open minded and reasoned perspective.								
PO 9	Critical sensibility	to lived experiences with	self aw	aren	ess a	nd reflexivity of	f both self a	nd soci	iety.	
PO 10	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data.									
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.									
PO 12	-	e of the values and beliefs		<u> </u>		-				
PO 13	-	Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.								
PO 14	inspiring vision bu	pping out the tasks of a pilot ilding a team who can help	p achie	ve th	e vis	ion motivating.				
PO 15		knowledge and skills inclues throughout life through			ng h	ow to learn that	are necessa	ry for	participating	

COs	COURSE OUTCOME
CO 1	Students enable to understand various methods of polymer preparation.
CO 2	Acquire knowledge about types of polymers and processing techniques.
CO 3	Students know Molecular weight determination of polymers.
CO 4	Students will analyze the various processing of polymers
CO 5	Students enable to understand importance of polymers used for commercial applications.
Pre-requisites	

Г

					KNO	OWLE	DGE I	EVE	LS									
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing																		
		21011				/ PO /			0	• •	• •	1						
		3/2/11	indicat	es the st	-	of cor	relatio	n, 3-st	<u> </u>		ium, I	-weak)						
Cos	S				KLs				PO									
СО	1				2				PO									
									PO									
СО	2				1				PO									
									PO									
CO	3				5				PO PO					KLs         2         1         5         5         4         6         2         4         1         3         2         1         6         2         1         6         3         2         1         6         3         1         6         3         1         2         1         2         1         2         1         2         1         2         1         2         1         2         1         2         3         1         3         1         2         1         2         3         1          3          1          1          1          2				
															PO14 PO15 1 2			
CO	4		3						PO 7 PO 8									
			2					PO 9										
CO	5							PO 10										
								PO 11				3						
PSC	)s		KLs					PO 12					2					
PSO	1				3				PO	3		1						
PSO	2				4			PO 14					6					
PSO	3		1					PO 15				3						
					(	CO/PO	O Map	ping										
	(	3/2/1 i	indicat	es the st	trength	of cor	relatio	n, 3-st	rong,	2-med	ium, 1	-weak)						
COs						Prog	ramm	e Outo	come (	POs)								
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15			
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2			
CO2	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1			
CO3	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1			
CO4	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3			
CO5	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2			

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)											
Programme Specific Outcome (POs)											
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	2	1	1	3	2						
PSO2	1	1	2	2	1						
PSO3	2	3	1	1	2						

Course Assessment Methods							
Direct							
1. Continuous Assessment Test I, II & Model							
2. Assignment							
3. End Semester Examinations							
Indirect							
1. Course End Delivery							

Content of the Syllabus													
	Basic Concepts	Periods	15										
Unit - I	Free radical, cationic and anionic polymerization. Cond	Monomers, Polymers - natural, Semisynthetic, synthetic degree of polymerization, Linear, branched and network Polymers. Addition polymerization: Mechanism of Free radical, cationic and anionic polymerization. Condensation Polymerization in homogeneous and heterogeneous systems.											
	Co-ordination and co-polymerization	Periods	15										
Unit - II	Kinetics, mono and bimetallic mechanism of co-ordination polymers. Advantages of Zeigler-Natta catalyst. Co-polymerization: Block and graft co-polymers, Types of co-polymerization. Reactivity ratio. Cross-linked polymers and their applications.												
Unit - III	Molecular Weight and Properties Importance of molecular weight – Average molecular weight average and viscosity average molecular weights. Measure Viscosity, light scattering, osmotic and ultracentrifugation r and physical properties–crystalline melting point Tm. Glass Determination of Tg. Relationship between Tm and Tg.	ement of molect nethods. Polyn	ular weights- ner structure										
	Polymer Processing	Periods	15										
Unit - IV	Compounding, processing techniques: calendering, die casting, rotational casting, film casting, injection moulding, blow moulding extrusion, moulding, thermoforming, foaming, reinforcing and fibre spinning. Plastics, thermoplastic and thermosetting polymers.												
	Preparation and applications of Commercial Polymers	Periods	15										
Unit - V	Polyethylene, polyvinyl chloride, polyamides, polyesters, phenolic resins, epoxy resins. Natural rubber and rubbers derived from butadiene, Buna-S. Functional polymers, Fire retarding polymers and electrically conducting polymers. Biomedical polymers–contact lens, dental polymers, artificial heart, kidney, skin and blood cells.												
	Total Periods		75										

Text	Text Books									
1	V. R. Gowariker, N.V. Viswanathan and J. Sreedhar, Polymer Science, New Age Int., (1986).									
Refe	References									
1	F.W. Billmeyer, Text Book of Polymer Science, 3rd Edition, J.Wiley, (2003).									
2	H.R. Alcock and F.W. Lamber, Contemporary Polymer Chemistry, Prentice Hall, (1981).									
3	P.J. Flory, Principles of Polymer Chemistry, Cornell University press, New York, (1953).									
4	G. Odian, Principles of Polymerization, 2nd Edition, John Wiley & Sons, New York, (1981).									
E-Re	ferences									
1	http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/vsepr.html									
2	https://chem.libretexts.org									
3	http://www.chem.iitb.ac.in/people/Faculty/prof/pdfs/L5.pdf									

Signature of BOS Chairman

None Page - Nove	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	M.Sc	Programme Code			PO	CH	Regulati	ons	2020-2022				
Department	Cł	emistry				Semester			3				
Course Code	Cou	rse Name	per	Periods per Week Credit					um Marks				
20P3CHED02	ELECTIVE PA Industrial Chen		L 5	Т	Р	C 04	CA 25	ESI 75					
Course Objectives	To understand t	To impart knowledge on fermentation, pigments, oils and fats. To understand the industrial applications of chemistry. To give an idea for the student about drugs and explosives.											
POs	PROGRAMME OUTCOME												
PO 1		Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that											
PO 2	form a part of an undergraduate programme of study. Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.												
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications												
PO 4		plate from what one has le											
PO 5	arguments of other	Ability to evaluate the reliability and relevance of evidence identify logical flaws and holes in the arguments of others analyse and synthesise data from a variety of sources draw valid Conclusions.											
PO 6	articulating ability	and capability for asking to recognise cause and effective	ect rela	ation	ships	define problem	s formulate	hypotl	heses.				
PO 7	-	ectively and respectfully up and act together as a gr											
PO 8	ideas, evidence and	interpret and draw conclu l experiences from an oper	n mind	ed ar	nd re	asoned perspect	ive.						
PO 9		to lived experiences with s											
PO 10		CT in a variety of learning information sources and u							ate and use a				
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.												
PO 12	-	of the values and beliefs		<u> </u>									
PO 13	-	moral ethical values in on the second		-			-	argun	nent about an				
PO 14	inspiring vision bu	pping out the tasks of a t ilding a team who can help	o achie	ve th	e vis	sion motivating.	_						
PO 15		knowledge and skills inclues throughout life through	-		ng h	ow to learn that	are necessa	ry for	participating				

COs	COURSE OUTCOME
CO 1	Students enable to understand various fermentation processes.
CO 2	Acquire knowledge about different drugs and pharmaceutical aids.
CO 3	Students know about the types of pigments and its use.
CO 4	Students will analyze the applications of enamels, adhesives and explosives.
CO 5	Students enable to understand importance of oils and fats for commercial applications.
Pre-requisites	

KNOWLEDGE LEVELS																
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing																
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)																
		3/2/1 i	indicat		-	of cor	relatio	n, 3-st	<u> </u>		ium, I	-weak)				
Cos	5			]	KLs				PO							
СО	1				3				PO							
	-				5				PO							
CO	2				1			PO 3								
	_				•				PO	j. 2-medium, 1-weak)       No       KLs         Ds       KLs         D1       2         D2       1         D3       5         D4       5         D5       4         D6       6         D7       2         D8       4         D9       1         10       3         11       3         12       2         13       1         14       6         15       3 <b>5</b> , 2-medium, 1-weak)       PO10         (POs)       2       2       3       2       1       2						
СО	3				5				PO							
									PO	-						
CO	4				3				PO							
			5					PO 8								
CO	5				2				PO	-				PO14 PO15 1 2 1 1 2 1 1 3		
				PO 10												
PSO	S		KLs					PO 11 PO 12								
DCO	1		3					PO 12 PO 13								
PSO								PO 13 PO 14								
PSO PSO			4					PO 14 PO 15								
P30	3						) Man	Apping 5								
	(	3/2/1 i	indicat	es the st			-		rong,	2-med	ium, 1	-weak)				
						Prog	ramm	e Outo	come (	(POs)						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1	2	2	1	1	1	1	1	1	2	2	2	3	2	1	2	
CO2	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1	
CO3	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1	
CO4	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3	
CO5	3	2	1	2	1	1	1	1	2	2	2	3	2	1	3	

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
Cas	Programme Specific Outcome (POs)						
Cos	CO1	CO2	CO3	CO4	CO5		
PSO1	2	2	1	3	2		
PSO2	1	1	2	2	1		
PSO3	2	3	1	1	2		

Course Assessment Methods			
Direct			
1. Continuous Assessment Test I, II & Model			
2. Assignment			
3. End Semester Examinations			
Indirect			
1. Course End Delivery			

	Content of the Syllabus							
	Fermentation	Periods	15					
	Introduction - Historical - Conditions favourable for ferme	entation. Chara	cteristics for					
Unit - I	enzymes - short accounts of some fermentation processes							
	sprits- wines and vinegar. Ethyl alcohol from molasses- Prep	paration of was	h distillation-					
	Alcohol from waste sulphite liquor.	D : 1	1.5					
	Drugs, diagnostic reagents and pharmaceutics aids	Periods	15					
	<b>Drugs:</b> Definition sources of drugs – some important drugs	· ·	nacetin –					
	paracetamol – penicillin – chlormycetin – structure – propert							
Unit - II	<b>Organic diagnostic reagents</b> – definition – uses – sodium diatrizoate, phenol red							
01111 - 11	Evans blue, indigo carmine, methylene blue, xylose, Histamine and sodium benzoate - properties – uses.							
	<b>Organic pharmaceutics aids</b> – Definition – preservatives – antioxidants – flavouring							
	agents – colouring agents – sweetening agents - Emulsifying agents and stabilising							
	agents – examples for each class – uses (structure and preparation not necessary)							
	Pigments	Periods	15					
	Definition – composition, characteristics and uses of white	pigments - whi	te lead, Zinc					
Unit - III	oxide Lithopone and $TiO_2$ – Blue pigments – Ultra marine blue, cobalt blue and iron							
	blue - characteristics - uses. Red pigments - red lead -characteristics and uses. Green							
	pigments - chrome green, Guigwet's green and chromium	oxide – chara	cteristics and					
	their uses- Black pigments- Yellow pigments.							
	Adhesives, Enamels and Explosives	Periods	15					
	Adhesives: definition – classification of adhesives – animal glue – preparation- uses –							
Unit - IV	protein adhesives - starch adhesives - preparation - uses.							
	<b>Enamels:</b> Introduction - Raw Materials – Manufacture and A		nivos Nitro					
	<b>Explosives:</b> Introduction- Classification- preparation and uses of explosives- Nitro cellulose, TNT, Picric acid, Gun Powder, Cordite and Dynamite.							
	conditioned, inter, i lefte deld, Gui i owder, Coldite and Dynar	into.						

	Oils and Fats	Periods	15
Unit - V	Introduction – distinction, properties- classification- vege cotton seed oil and soybean oil- Refining of crude vegetable peanut oil- olive oil- castor oil- safflower oil. Analysis of oils and fats: Definition and determination of S value and RM value.	oils- coconut o	oil, palm oil-
Total Periods 75			

Text	Text Books				
1	B.N. Charabarthy – "Industrial Chemistry", 1st Ed., Oxford and IBh Publishing, New Delhi.				
2	B.K. Sharma – "Industrial Chemistry", 1st Ed., (1983), Goel Publication, Meerut.				
3	Arun Bahl and B.S. Bahl – "Text Book of Organic Chemistry", 11th and 18th Ed., S. Chand, New Delhi, 2006.				
4	Ghosh, Jayashree – "Text Book of Pharmaceutical Chemistry", 3rd Ed., S.Chand & Co. Ltd., New Delhi, 1999.				
Refe	rences				
1	V.P. Gowariker and N.V. Viswanathan – "Polymer Science", 1st Ed., Wiley Easter Pvt. Ltd., New Delhi.				
2	Lakshmi. S – "Pharmaceutical Chemistry", 3rd Ed., (1995), Sultan Chand & Sons, New Delhi.				
3	Rajasekaran, VN. – "Pharmaceutical Chemistry", 1st Ed., (2003), Sun Publications – Chennai.				
4	Krishnamoorthy, P. Vallinayagan & K. Jaya Subramanian – "Applied Chemistry", 2 nd Ed., (1999, 2001), Tata MaGraw-HillPublishing Co. Ltd., New Delhi.				
E-Re	ferences				
1	http://www.naturebioscience.com/molasses-fermentation.php				
2	https://digital-photography-school.com/mastering-color-series-color-blue-in-photography				
3	https://www.ilo.org/legacy/english/protection/safework/ghs/ghsfinal/ghsc1528.pdf				

HONEN ENDOWERNEN	VIVEKANANI	DHA COLLEGE OF A (AUTO) Elayampalayam, Ti	NOM	DUS	)		OR WOMI		Rheinland 0 19507901-2008	
Programme	M.Sc	Programme Code	PCH Regulations 2					020-2022		
Department	Cl	nemistry				Semester			4	
Course Code	Cou	rse Name	per	erioc We	ek	Credit			m Marks	
20P4CH09	CORE PAPER Physical metho	IX: ds in Chemistry	L 5	Т	Р	05	CA 25	ESE 75	Total 100	
Course Objectives	spectroscopy.	students to understa Fo acquire knowleda rganic chemistry.			•	·				
POs		PROG	RAM	MF	C <b>O</b>	UTCOME				
PO 1		strating comprehensive k ndergraduate programme (			and 1	understanding o	f one or m	ore disc	iplines that	
PO 2	Ability to express	thoughts and ideas effect confidently share ones vie	tively	in w				with o	thers using	
PO 3		y analytic thought to a b ne basis of empirical evide							arguments	
PO 4		blate from what one has let ems rather than replicate of				-				
PO 5	Ability to evaluate the reliability and relevance of evidence identify logical flaws and holes in the arguments of others analyse and synthesise data from a variety of sources draw valid Conclusions.							s.		
PO 6	A sense of inquiry and capability for asking relevant appropriate questions problematising synthesising and articulating ability to recognise cause and effect relationships define problems formulate hypotheses.									
PO 7	-	fectively and respectfully up and act together as a gr					-			
PO 8	Ability to analyse interpret and draw conclusions from quantitative qualitative data and critically evaluate ideas, evidence and experiences from an open minded and reasoned perspective.							•		
PO 9		to lived experiences with								
PO 10	Capability to use ICT in a variety of learning situations demonstrate ability to access evaluate and use a variety of relevant information sources and use appropriate software for analysis of data.									
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.									
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.									
PO 13	Ability to embrace moral ethical values in conducting one's life formulate a position argument about an ethical issue from multiple perspectives and use ethical practices in all work.									
PO 14	inspiring vision bu	pping out the tasks of a tilding a team who can help	o achie	ve th	e vis	sion motivating.	-			
PO 15		knowledge and skills inclues throughout life through	-		ng h	ow to learn that	are necessa	ry for p	articipating	

COs	COURSE OUTCOME
CO 1	Students will learn about Electromagnetic radiation
CO 2	Students can understand the importance
CO 3	Students will learn about the theory of UV spectroscopy, Fluorescence Spectroscopy and its applications
CO 4	Students will analyze theory and applications of NMR and EPR spectroscopy
CO 5	Students will evaluate the molecular weight of the organic compounds
Pre-requisites	

					KNO	OWLE	DGE I	LEVE	LS						
1.R	emer	nberii	ng, 2.U	ndersta					-	5.Eval	luating	g, 6.Syr	nthesiz	ing	
	(	<b>3/2/1</b> i	indicat	es the st		/ PO / of cor			0	2-med	ium, 1	-weak)	1		
Cos				]	KLs				PO	S		KLs			
CO 1	1				1				PO	1			2		
CO 1					1				PO	2			1		
CO 2	,				2				PO				5		
	_				2				PO				5		
CO 3	3				3				PO				4		
									PO				6		
CO 4	ļ		4			-	PO 7				2 4				
								PO 8 4 PO 9 1							
CO 5	5		5					PO 10				3			
							PO 10				3				
PSOs	8				KLs	Ls PO 12				2					
PSO	1				3			PO 13				1			
PSO 2	2				4			PO 14				6	6		
PSO 2	3				1				PO 1	5			3		
				_		CO / P(	-	- 0							
 	(	<b>3/2/1</b> i	indicat	es the st	trength				-		ium, 1	-weak)			
COs						Prog	ramm	e Outo	come (	POs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2

CO5

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
Cas	Programme Specific Outcome (POs)						
Cos	CO1	CO2	CO3	CO4	CO5		
PSO1	1	2	3	2	1		
PSO2	1	1	2	3	2		
PSO3	3	2	1	1	1		

# Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect 1. Course End Delivery

	Content of the Syllabus					
	Microwave spectra	Periods	15			
Unit - I	<ul> <li>Introduction: Electromagnetic radiation, Interaction of light with matter, mechanism of absorption &amp; emission of radiation. Rotational, vibrational, and electronic transitions in molecules; regions and representation of spectra. Micro wave Spectroscopy: Diatomic molecules as rigid rotors: rotational energy levels, intensity of spectral lines, selection rules, effect of isotopic substitution. Diatomic molecules as non-rigid rotors. Rotational spectra of polyatomic molecules – Linear and Symmetric top molecule.</li> </ul>					
	Vibrational Spectra	Periods	15			
Unit - II	Vibrational Spectroscopy: Vibrating diatomic molecule: energy of diatomic molecules as simple harmonic and Anharmonic oscillator - energy levels, vibrational transitions, selection rules; Diatomic vibrating rotator: Born-Oppenheimer approximation, vibration- rotational spectra, selection rules; P, Q, R branches. Vibrations of polyatomic molecules: fundamental vibrations and its symmetry, normal modes of vibration, overtones and combination of bands. Raman Effect: Rayleigh and Raman scattering, Stokes and anti- Stokes lines, molecular polarizability, Raman selection rules. Raman spectra: rotational Raman spectra- linear molecules, symmetric top and spherical top molecules; vibrational Raman spectra-symmetry and Raman active vibrations, rule of mutual exclusion.					
	UV and fluorescence Spectroscopy	Periods	15			
Unit - III	UV-spectroscopy: Theory, Instrumentation, Beer-Lamberts spectrum. Electronic transitions – Types, selection rules, Ch and $\varepsilon_{max}$ ) Conjugated double bond – dienes, carbonyl co Factors influencing absorption. Spectroscopic terms – C Bathochromic shift, Hypsochromic shift and Hypochromic sl Fluorescence Spectroscopy – Principles, instrumentation and	aracteristic abs mpounds and hromophore, hift and applica	sorption (λ _{max} aryl groups. Auxochrome,			

	NMR and ESR Spectroscopy	Periods	15
Unit - IV	NMR Spectra: Theory, Instrumentation. Chemical shift - Fact Shielding and deshielding mechanisms. Spin-spin coupling, C and Vicinal coupling constant, heteronuclear couplings, I Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and appl Spectroscopy – Theory, derivative curves, g values, Hyper anisotropic systems and Applications	Coupling constant Nuclear Overhications of ¹ H	nt – Geminal auser effect. NMR. ESR
	Mass and Mossbauer Spectroscopy	Periods	15
Unit - V	Mass Spectroscopy: Theory, Instrumentation, Types of iona ion, rearrangement and Metastable ion, odd even ions. Mo peak. Determination of molecular formula - Nitrogen rule, rin analysis - Fragmentation process: Retro Diels Alder re rearrangement - Double bond and ring equivalence. hydrocarbon, carbonyl compounds and nitro compounds). Mo width - Isomer shift - Quadrupole interactions - Magne elucidation of iron tin complexes.	olecular ion pe ng rule - Isotop rearrangement Fragmentationssbauer Spectr	ak and Base ic abundance - Mclattery on (alcohol, oscopy: Line
	Total Periods		75

Text Books	
1	Y. R. Sharma., Elementary Organic Spectroscopy, Chand Publications (2007)
2	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014)
3	R. Chang., Basic principles of Spectroscopy, McGraw-Hill Inc., US (1971).
4	Jag Mohan., Organic Spectroscopy - Principles and Applications, CRC press (2004)
5	D.N. Sathyanarayana., Introduction to Magnetic resonance Spectroscopy, IK International Publishing
	House Pvt. Ltd., (2013)
References	· ·
1	C. N. Banwell and E. M. McCash., Fundamentals of Molecular Spectroscopy, 4th Edn, Tata McGraw Hill, (2010).
2	B.R. Puri, L. R. Sharma, M. S. Pathania., Principles of Physical Chemistry, Vishal Publishing Co. (2016)
3	P. S. Kalsi., Spectroscopy of Organic Compounds, New Age International (2007)
E-References	
1	nptel.ac.in/courses/103103033/module9/lecture1.pdf
2	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf
3	https://www.ceitec.eu/nanoparticles-for-biomedical-applications/f33079
4	https://chem.libretexts.org/

HONEN ENPONEENEN	VIVEKANANI	DHA COLLEGE OF A (AUTON Elayampalayam, Tir	ОМ	DUS	5)		OR WOMI		Revendend Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet Internet In
Programme	M.Sc Programme Code PCH Regulations 2020-20								2020-2022
Department	C	nemistry				Semester			4
Course Code	Со	ırse Name	per	erio We	eek	Credit			Marks
			L	Т	Р	С	CA	ESE	Total
20P4CHE05	ELECTIVE V: Environmental	Chemistry	5			04	25	75	100
Course Objectives		wledge in the field strial, agricultural poll of atmosphere.							
POs		PROGE	RAM	MF	E OI	UTCOME			
PO 1		strating comprehensive kn idergraduate programme or			and u	understanding o	f one or m	ore disc	iplines that
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.								
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications								
PO 4		plate from what one has leasens rather than replicate co				-			
PO 5		e the reliability and releves analyse and synthesise da							
PO 6		and capability for asking retor to recognise cause and effe							-
PO 7	-	Cectively and respectfully we up and act together as a group of the sector of the sect					-		
PO 8		interpret and draw conclus l experiences from an open			-	-		l critica	lly evaluate
PO 9		to lived experiences with se							
PO 10		CT in a variety of learnin information sources and us							e and use a
PO 11	Ability to work in through to complet	dependently, identify appro	opriat	e res	ource	es required for a	a project an	d manaş	ge a project
PO 12		of the values and beliefs o							
PO 13	•	moral ethical values in constrained and unattended		•			•	argume	nt about an
PO 14		pping out the tasks of a te ilding a team who can help					etting direct	ion fori	nulating an
PO 15	• •	knowledge and skills inclue as throughout life through s	-		ng h	ow to learn that	are necessa	ry for p	articipating

COs	COURSE OUTCOME						
CO 1	udents will acquire sound knowledge of environmental chemistry						
CO 2	idents learn the importance of water management						
CO 3	Students will acquire knowledge about pollution from industries						
CO 4	Students will acquire knowledge about pollution from agricultural wastes						
CO 5	Students will evaluate the waste management						
Pre-requisites							

KNOWLEDGE LEVELS																
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping																
	(	<b>3/2/1</b> i	indicat	es the st					0	2-med	ium, 1	-weak)				
Cos	Cos KLs												KI	_S		
СО	1				1				PO				2			
	1				1				PO				1			
CO	2				2				PO				5			
									PO				5			
CO	3				4				PO				4			
									PO PO				2			
CO	4			4				PO 7 PO 8			4					
								PO 9				1				
CO	5			4				PO 10				3				
DSO			KLs					PO 11				3				
PSO	s				KLS			PO 12				2				
PSO	1				3			PO 13				1				
PSO					4			PO 14				6				
PSO	3				1			PO 15					3	3		
	(	2/2/1	indiaat	es the st		CO/PO	-	- 0	nong	2 mod	1	wook				
		5/2/1	muicai	es the st	uengu						iuiii, 1	-weak)				
COs					201		ramm		1			2010	2010			
		PO2	PO3	PO4	PO5	PO6	PO7	PO8					PO13			
CO1	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1	
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2	
CO3	1	1	2	2 2 3 1 1		1	3	1	2	2	1	1	1	2		
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2	
CO5	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2	

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Cas	Programme Specific Outcome (POs)										
Cos	CO1 CO2 CO3 CO4 CO5										
PSO1	1	2	2	2	2						
PSO2	PSO2 1 1 3 3 3										
PSO3	3	2	1	1	1						

#### **Course Assessment Methods**

Course Assessment Actions							
Direct							
1. Continuous Assessment Test I, II & Model							
2. Assignment							
3. End Semester Examinations							
Indirect							
1. Course End Delivery							

	Content of the Syllabus										
	Fundamentals of Environmental Chemistry	Periods	15								
	Concept of environmental chemistry, Composition of atmosphere	e, vertical temp	perature and								
Unit - I	vertical structure of the atmosphere. Environmental pollution: Types and sources of Pollutants -										
	air, water and soil pollution. Prevention and control of pollutions	Biogeochemical	cycles C, N,								
	P, S and O. Biological control of chemical factors in the environment.										
	Water Chemistry	Periods	15								
	Characteristics of water, Quality of natural water, quality requirement	ents of portable	water, organic,								
	humic and colloidal material in water, chemical composition of water bodies, Commercial water										
Unit - II	purification method- reverse osmosis method-disinfection of water- purification method of water										
	for industrial purpose- lime-soda process, ion exchange process, Zeolite process. Water pollution										
	and its environmental impact, eutrophication, Water quality parameters: pH, conductivity, TDS,										
	DO, BOD and COD. Role of water in the environment- Hydrologica	l cycle.									
	Industrial Pollutants	Periods	15								
	Polymers and Plastics - The classification - The characteristics -	Environmental	Implications of								
	polymers and plastics - abatement procedures for polymers and plastics pollution. Asbestos-										
Unit - III	Structural characteristics of Asbestos - applications of asbestos - sources of asbestos in the										
Unit - 111	environment - analysis of asbestos - effects of asbestos pollution - I	Mitigation of ast	estos pollution.								
	Polychlorinated Biphenyls The need - Fate of poly chlorinated Biphenyls in the Environment -										
	Environmental Implications of Polychlorinated Biphenyls - A	batement procee	dures for poly								
	chlorinated Biphenyls pollution.										
Unit - IV	Agricultural Pollutants	Periods	15								

	Fertilizers The classification - Environmental implications of fertilizers	Fertilizers The classification - Environmental implications of fertilizers - Abatement procedures for								
	fertilizers pollution - Eutrophication. Insecticides The classification - The characteristics -									
	Environmental implications of insecticides - Abatement procedures for insecticides pollution -									
	Bhopal Episode. Fungicides and Herbicides The need - The class	sification - The	characteristics -							
	Environmental Implications of Fungicides and Herbicides - Abate	ment procedures	s for fungicides							
	and Herbicides pollution.									
	Waste Management and Recycling	Periods	15							
	Sources and classification of waste. Waste management - Land fil	ling - Incineration	on - Disposal of							
	medicinal waste - New technique to treat industrial and farm effluen	nts - Reduce, reu	se and recycle -							
Unit - V	Wealth from waste recycling - Recycling technique - Utilizing agricultural waste - Energy Recovery									
	from Waste - Municipal waste into road making - Electricity from tannery waste - Vermicomposting									
	- biogas - Plastic recycling techniques - Waste water and its treatment recycling of sewage -									
	Removal of hazardous wastes from contaminated metals.									
	Total Periods		75							

Text Books	
1	Sharma and Kaur, Environmental Chemistry, Krishna Publishers, New Delhi, 2000.
2	Dara, S.S., Environmental Pollution and Control, S.Chand & Co., New Delhi, First Edition, 1993.
3	S.E Manahan, Environmental Chemistry, Lewis Publishers, London, 2001.
References	
1	De, A.K., Environmental Chemistry, New Age International Publishers Private Ltd., New Delhi, Fifth Edition, 2008.
2	Sodhi, G.S., Fundamantal Concepts of Environmental Chemistry, Narosa Publishing House Pvt. Ltd., New Delhi, Third Edition, 2009.
E-References	
1	www.purdueglobal.edu/degree-programs/legal-studies/bachelor-environmental-policy-management
2	www.onlinecolleges.net/degrees/environmental-science

HOMEN ENPONEEMENT	VIVEKANANI	DHA COLLEGE OF A (AUTON Elayampalayam, Tir	ОМО	DUS	)		DR WOMI	EN	CENTRED	
Programme	M.Sc	Programme Code	PCH Regulations 2020-2022							
Department	С	hemistry				Semester	•		4	
Course Code	Со		erio We		Credit	Maximu		n Marks		
					Р	С	CA	ES	E Total	
20P4CHE06	ELECTIVE VI Corrosion Princ Monitoring	iples, Protection and	5			04	25	75	5 100	
Course Objectives	to minimize an	understanding of the ond prevent the corror or and materials selected	sion.	Un	ders	standing vari	ious corre			
POs		PROGI	RAM	MF	c ou	UTCOME				
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.									
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.									
PO 3	Capability to apply analytic thought to a body of knowledge analyse and evaluate evidence arguments claims beliefs on the basis of empirical evidence identify relevant assumptions or implications									
PO 4		blate from what one has leases and the second				-				
PO 5	-	e the reliability and rele s analyse and synthesise da					-			
PO 6		and capability for asking r to recognise cause and effe			· ~				-	
PO 7		fectively and respectfully ward act together as a gro								
PO 8		interpret and draw conclus l experiences from an open			-	-		l critic	cally evaluate	
PO 9	Critical sensibility	to lived experiences with s	elf aw	aren	ess a	nd reflexivity of	f both self a	nd soc	iety.	
PO 10		CT in a variety of learnin information sources and us	-				-		ate and use a	
PO 11	Ability to work in through to complet	dependently, identify appro	opriat	e res	ource	es required for	a project an	d man	age a project	
PO 12		of the values and beliefs of	f mul	tiple	cultu	res and a globa	l perspective	e.		
PO 13	-	e moral ethical values in c nultiple perspectives and u		-			-	argun	nent about an	
PO 14		oping out the tasks of a to ilding a team who can help						ion fo	ormulating an	
PO 15	Ability to acquire	knowledge and skills inclues throughout life through s	ding l	earni		-		ry for	participating	

COs	COURSE OUTCOME
CO 1	Students will acquire sound knowledge about corrosion and its types
CO 2	Students learn the importance of polarization and its causes
CO 3	Students will acquire knowledge about corrosion monitoring techniques
CO 4	Students will acquire knowledge about corrosion coating and prevention
CO 5	Students will evaluate the efficiency of corrosion inhibitor
Pre-requisites	

KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping															
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos					KLs		,	PO		,	,	KI	2S		
	1				1				PO	1			2		
СО	1				1				PO	2			1		
СО	2				2				PO				5		
					_				PO				5		
СО	3				4				PO				4		
									PO				6		
CO	4		4					PO 7 PO 8			4				
								PO 9				1			
CO	5				4			PO 10				3			
PSC	)c			KLs				PO 11					3		
	5			-				PO 12				2			
PSO					3			PO 13				1			
PSO					4			PO 14				6			
PSO	3				1			PO 15				3			
	(	3/2/1	indicat	es the st		CO / PO	-	- 0	rong	2-mod	ium 1	-wook)			
		51211	muicai	cs the st	uengen		ramm				<u>iuiii, i</u>	-wcak)			
COs		DOO	DO2	DO 4	DO5	PO6				1	DO11	DO12	DO12	DO14	DO15
	1	PO2	PO3	PO4	PO5		PO7	PO8				PO12			
C01	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	1	1		2 2 3 1 1			3	1	2	2	1	1	1	2	
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
Cas	Programme Specific Outcome (POs)										
Cos	CO1 CO2 CO3 CO4 CO5										
PSO1	1	2	2	2	2						
PSO2	1	1	3	3	3						
PSO3	3 2 1 1 1										

# Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect 1. Course End Delivery

Content of the Syllabus												
	Basic Concepts of corrosion	Periods	15									
	Corrosion - Introduction - definition - consequences of corrosion. Theories of corrosion - dry											
Unit - I	corrosion - wet or electrochemical corrosion - difference. Corrosio	on rate expression	on. Forms of									
	corrosion – Galvanic – crevice – pitting – intergranular – selective leaching – erosion – stress –											
	hydrogen damage - their prevention.											
	Thermodynamics of corrosion	Periods	15									
TT	Thermodynamics - Change of Gibbs free energy. Pourbaix diagram	of water, iron ar	nd aluminium –									
Unit - II	limitations of Pourbaix diagram. Polarization – measurement – causes of polarization.											
	Concentration polarization - activation polarization - resistance pola	arization (Basic i	deas only).									
	Corrosion monitoring techniques	Periods	15									
Unit - III	Corrosion monitoring techniques - Weight loss method - hydrogen permeation studies - electrical											
Umit - 111	resistance measurement - linear polarisation resistance - potentiodynamic and galvanodynamic											
	polarization – electrochemical impedance spectroscopy.											
	Corrosion prevention	Periods	15									
	Corrosion prevention - material selection - change of environment - proper design - anodic and											
Unit - IV	cathodic protection - application of coatings - types of coatings. Hot dipping - metal cladding -											
	cementation - electroplating - surface or chemical conversion co	ating – anodisin	g – vitreous or									
	porcelain enamel coating - paints (Basic idea only).											
	Corrosion inhibitors	Periods	15									
	Corrosion inhibitors - definition - types - chemical passivators	- adsorption in	nhibitors – film									
Unit - V	forming inhibitors - vapour phase inhibitors - advantages of using	inhibitors. Indus	trial application									
	of inhibitors - inhibition of reinforcing steel in concrete, coal wate	r slurries, coolin	g water system,									
	acid solutions and oxygen scavengers. Green inhibition - definition.											
	Total Periods		75									

Text Books	
1	Raj Narayan, An introduction to metallic corrosion and its prevention, Oxford and IBH Publishing company (1983).
2	V.S. Sastri, Green corrosion inhibitor, John Wiley and Sons Inc., Publications (2011).
3	A. Ravikrishnan, Applied chemistry, Sri Krishna Publications (2007).
References	
1	Mars. G. Fontana, Corrosion Engineering, Tata McGraw – Hill publishing company Ltd. (1986).
2	B.K. Sharma, Industrial Chemistry, Vol. I & II, Krishna Prakashan (2014).
E-References	
1	https://www.materials.unsw.edu.au/study-us/high-school-students-and-teachers/online tutorials / corrosion / introduction/wet-and-dry-corrosion
2	https://onlinelibrary.wiley.com/doi/full/10.1002/maco.202011977
3	https://www.vea.org.uk/what-is-enamel/

Monen Enpoyeentory	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	M.Sc	Programme Code	PCH Regulations 2020-20										
Department	Chemistry Semester 4												
Course Code	Со	irse Name		eriod We T		Credit C	Max CA	kimum ESE	m Marks				
20P4CHP04	CORE PRACTIC Organic Chemist		L	1	P 5	04	40	60	Total 100				
Course Objectives	The objective of this lab is to provide hands-on training to estimate organic compounds. It also gives an idea to sort out a suitable method to estimate organic compounds of their interest. To train the students to conduct two stage preparation.												
POs	PROGRAMME OUTCOME												
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.												
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.												
PO 3	claims beliefs on th	y analytic thought to a b be basis of empirical evide	nce id	entify	/ rele	vant assumption	ns or implic	ations	0				
PO 4		blate from what one has leaders rather than replicate of				-							
PO 5		e the reliability and reless analyse and synthesise d											
PO 6		and capability for asking to recognise cause and eff			•			•••	•				
PO 7		ectively and respectfully up and act together as a g											
PO 8		interpret and draw conclu l experiences from an oper			-	-		l critical	lly evaluate				
PO 9	Critical sensibility	to lived experiences with	self aw	aren	ess a	nd reflexivity of	f both self a	nd socie	ty.				
PO 10		CT in a variety of learnin information sources and u	-				-		e and use a				
PO 11	through to complet		-			-			ge a project				
PO 12		of the values and beliefs		-		÷							
PO 13	ethical issue from 1	moral ethical values in nultiple perspectives and	use eth	ical p	oracti	ices in all work.							
PO 14	inspiring vision but	pping out the tasks of a blinding a team who can help	p achie	ve th	e vis	ion motivating.	-		-				
PO 15		nowledge and skills inclu s throughout life through	-		ıg ho	w to learn that	are necessar	y for par	rticipating				

COs	COURSE OUTCOME
CO 1	Students can able to estimate quantitatively the give organic compound.
CO 2	Students can able to design a synthesis of new compound.
CO 3	Students can able to purify the synthesized compound.
CO 4	Students can able to propose the mechanism of chemical reactions
CO 5	Students will able to carry out their research in future.
Pre-requisites	

	KNOWLEDGE LEVELS															
1.F	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping															
	(	(3/2/1 i	ndicat	es the st					-	2-med	ium, 1	-weak)	1			
Co		,	POs		,	,	KL	_S								
СО	1				3				PO				2			
	1				5				PO				1			
СО	2				6				PO				5			
									PO				5			
CO	3				3				PO				4			
									PO				2			
CO	4				5			PO 7 PO 8					4			
			3						PO			1				
CO	5								PO 1	0		3				
PSC	<b>)</b> a		KLs					PO 11				3				
PSC	5				KLS			PO 12					2			
PSO					3			PO 13				1				
PSO					4			PO 14				6				
PSO	3				1				PO 1	5			3			
		(3/2/1 ;	ndicat	es the st		CO/P			trong	2-mod	ium 1	-wook)				
		(3/2/11	nuicat	es the si	uengu			ne Out	_		10111, 1	-wcak)				
COs		PO2	PO3	PO4	PO5	PO6		PO8	1	PO10	DO11	DO12	DO12	DO14	DO15	
CO1																
	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3	
CO2	1	1	2	2 2 1 3 1			1	1	1	1	1	1	3	1		
CO3	2	1	1	1 1 2 1 2				2	1	3	3	2	1	1	3	
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1	
CO5	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3	

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)												
Cas	Programme Specific Outcome (POs)												
Cos	CO1	CO2	CO3	CO4	CO5								
PSO1	3	1	3	1	3								
PSO2	2	1	2	2	2								
PSO3	1	1	1	1	1								

Course Assessment Methods								
Direct								
1. Continuous Assessment Test I, II & Model								
2. Assignment								
3. End Semester Examinations								
Indirect								
1. Course End Delivery								

	Content of the Syllabus											
	Organic Estimations and Spectral Interpretations	Periods	35									
Unit - I	Estimation of phenol, Estimation of aniline, Estimation of m	nethyl ketone, E	Estimation of									
Omt - I	glucose.											
	Interpretation of IR and UV visible spectra of organic compo	ounds (six in ea	ch case)									
	Two stage preparations	Periods	40									
	sym-Tribromobenzene from aniline (Bromination + Hydroly											
Unit - H	p-nitroaniline from acetanilide (Nitration + Hydrolysis)											
01111 - 11	Benzanilide from benzophenone (Beckmann rearrangement)											
	m-nitroaniline from nitrobenzene (Nitration + Reduction)											
	p-bromo acetanlide from aniline (Acetylation + Bromination	)										
	<b>Total Periods</b>		75									

Refe	References										
1	Dr. N.S Gnanapragasam, Organic chemistry Lab manual										
2	Raj .K. Bansal, Laboratory Manual of Organic chemistry, 3rd Edition, New Age Internal Publication .										
3	B.S. Furniss, A.J.Hannaford, P.W.D Smith and A.R. Tatchell, Vogel's Practical Organic chemistry, 5th										
5	Edition. ELBS										
4	V. Venkateshwaran, R. Veerasamy, A. R. Kulandaivelu, Basic principles of practical chemistry, Sultan										
4	Chand & Sons,New Delhi, 2016										
E-Re	ferences										
1	http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html										
2	http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1										
3	http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1										

HOLEN EMPONERNEN	VIVEKANANI	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	M.Sc	Programme Code	PCH Regulations 2020-20											
Department	Chemistry Semester 4													
Course Code	Со	irse Name		eriod We T		Credit C	Max CA	kimum ESE	Marks Total					
20P4CHP05	CORE PRACTIO Inorganic Chemi			-	5	04	40	60	100					
Course Objectives	To acquire training in micro scale experimental techniques. To acquire knowledge on the properties of ions and their compounds .To educate the students about the complex formation reaction, influence of pH, stability of complexes and application													
POs	PROGRAMME OUTCOME													
PO 1		Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.												
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.													
PO 3	claims beliefs on th	y analytic thought to a b ne basis of empirical evide	nce id	entify	/ rele	vant assumption	ns or implic	ations	_					
PO 4		blate from what one has le				-								
PO 5	-	e the reliability and rele s analyse and synthesise d				-	-							
PO 6		and capability for asking to recognise cause and eff												
PO 7	-	fectively and respectfully up and act together as a gr					-							
PO 8		interpret and draw conclu l experiences from an oper						d critical	lly evaluate					
PO 9	Critical sensibility	to lived experiences with	self aw	aren	ess a	nd reflexivity of	f both self a	nd socie	ty.					
PO 10		CT in a variety of learnin information sources and u	-				-		e and use a					
PO 11	through to complet		-			-			ge a project					
PO 12	-	of the values and beliefs		-		-								
PO 13	ethical issue from	e moral ethical values in a multiple perspectives and the second se	use eth	ical p	oract	ices in all work.	•	C						
PO 14	inspiring vision bu	oping out the tasks of a silding a team who can help	p achie	ve th	e vis	ion motivating.	-		-					
PO 15		cnowledge and skills inclu es throughout life through			ng hơ	w to learn that	are necessar	y for pai	rticipating					

COs	COURSE OUTCOME
CO 1	Students will learn how to conduct a process systematically and precisely
CO 2	The qualitative analysis gives a type of mental training and develops a power of reasoning not equal to any other course in chemistry
CO 3	The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during qualitative and quantitative examination of a chemical compound
CO 4	Students will able to design and synthesize new complexes
CO 5	Students will able to carry out their research in future
Pre-requisites	

	KNOWLEDGE LEVELS														
1.R	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)														
	(	(3/2/1 i	ndicat	es the st	rength	n of con	rrelati	on, 3-s	trong,	, 2-med	ium, 1	-weak)			
Cos	5			]	KLs				PO	s			KL	2S	
СО	1				1				PO	1			2		
	1				1				PO				1		
CO	2				4				PO				5		
					4				PO				5		
CO	3				2				PO				4		
					2				PO				6		
CO	4				6				PO			2 4			
								PO 8 PO 9					1		
CO	5		3					PO 10				3			
								PO 10					3		
PSO	S			]	KLs			PO 12				2			
PSO	1				3				PO 1			1			
PSO	2				4			PO 14				6			
PSO	3				1				PO 1	15			3		
						CO/P									
	(	(3/2/1 i	ndicat	es the st	trength	n of co	rrelati	on, 3-s	trong,	, 2-med	lium, 1	-weak)	)		
COs						Prog	gramn	ne Out	come	(POs)	1	1	1		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO2	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO3	3	2	1 1 1 1 1					1	2	2	2	3	2	1	2
CO4	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1
CO5	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
Programme Specific Outcome (POs)										
Cos	CO1	CO2	CO3	CO4	CO5					
PSO1	1	2	2	1	3					
PSO2	1	3	1	1	2					
PSO3	3	1	2	1	1					

Course Assessment Methods						
Direct						
1. Continuous Assessment Test I, II & Model						
2. Assignment						
3. End Semester Examinations						
Indirect						
1. Course End Delivery						

Content of the Syllabus										
	Organic Estimations and Spectral Interpretations	Periods	35							
Unit - I	Iron and Magnesium, Iron and Nickel, Copper and Nickel, Copper and Zinc									
	Preparations	Periods	40							
Unit - II	Tris(thiourea)copper(I) chlorideBis(acetylacetanato) copper Hexamminecobalt(III) chlorideSodium hexanitrocobaltate( Potasium trioxalatoaluminate(III) trihydrate Chloropentamminecobalt(III) chlorideHexamminenickel(II	(III)								
Total Periods										

Text Books	
References	
1	J. Mendham, R.C. Denney, J.D. Barnes, M.J.K. Thomas, Vogel's Textbook of Quantitative Chemical Analysis, 6th Edition, Pearson Education (2001)
2	V. Venkateswaran, R. Veeraswamy and A.R.Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995)
E-References	
1	http://lib.hku.hk/Press/9622092128.pdf
2	http://www.kvsunjuwan.com
3	http://science-blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf

HOMEN EMPONEERIEST	VIVEKANANI	<b>DHA COLLEGE OF AR</b> ( <b>AUTONO</b> Elayampalayam, Tiruc	MOU	S)			DR WOMI	TÛ	Abueintand Shitre CD 19 190078607		
Programme	M.Sc	Programme Code			PCI	H	Regulati	ons 2	2020-2022		
Department	(	Chemistry				Semester	r		4		
Course Code	Co	ourse Name		erio W	eek	Credit	Maximu		ım Marks		
				Т	Р	С	CA	ESE	Total		
20P4CHCP06	CORE PRACT Physical Chemi	ICAL II: stry Practical - II			4	04	40	60	100		
Course Objectives	chemical prope	To apply the principles of phase rule, adsorption in the analysis of physical and chemical properties of the given compounds and develop laboratory skills and the ability to work with instruments independently.									
POs		PROGRA	MM	E C	)UT	COME					
PO 1		strating comprehensive known ndergraduate programme of s		and	unde	erstanding o	of one or m	ore disc	plines that		
PO 2	Ability to express	thoughts and ideas effective confidently share ones views	ely in					e with c	thers using		
PO 3		y analytic thought to a body ne basis of empirical evidence							arguments		
PO 4	· · ·	plate from what one has learn ems rather than replicate curr			-	-					
PO 5	-	e the reliability and relevant s analyse and synthesise data				-	-				
PO 6		and capability for asking rele to recognise cause and effect									
PO 7	-	fectively and respectfully wit up and act together as a group					-				
PO 8		interpret and draw conclusion l experiences from an open m		-		-		d critica	lly evaluate		
PO 9	-	to lived experiences with self							÷		
PO 10	variety of relevant	CT in a variety of learning information sources and use a	approp	riate	softw	are for anal	ysis of data				
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.										
PO 12	-	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.									
PO 13	-	e moral ethical values in con nultiple perspectives and use		-			-	argume	nt about an		
PO 14	inspiring vision bu	pping out the tasks of a team ilding a team who can help ac	chieve	the v	vision	motivating.			-		
PO 15		nowledge and skills includin throughout life through self			now to	o learn that a	are necessar	y for pa	rticipating		

COs	COURSE OUTCOME
CO 1	Students will understand the breadth and concepts of physical chemistry.
CO 2	Students will develop skills in procedures and instrumental methods applied in analytical and practical tasks of physical chemistry
CO 3	Students will plan, conduct, review and report the experiment.
CO 4	Students will analyze the possible errors in phase studies.
CO 5	Students will evaluate the adsorption mechanism with time.
Pre-requisites	

KNOWLEDGE LEVELS															
1.F	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)														
	(	(3/2/1 i	ndicat	es the st	trengtł	n of co	rrelati	on, 3-s	trong,	2-med	ium, 1	-weak)	)		
Co	s			]	KLs				PO	8			KI	LS	
СО	1				2				PO	1			3		
	1				2				PO	2			1		
СО	2				1				PO				4		
									PO				2		
CO	3				3				PO PO				6		
									PO				2		
CO	4				2			PO 7 PO 8					1		
	~		6				PO 9					1			
CO	2						PO 10				4				
PSC	)s		KLs				PO 11				5				
							PO 12				3				
PSO			3				PO 13				1 6				
PSO PSO			4				PO 14 PO 15				0				
130	5			1 PO 15 1 CO / PO Mapping											
		(3/2/1 i	ndicat	es the s					trong	2-med	lium, 1	-weak)	)		
						Pro	gramn	ne Out	come	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	2	1	3	1	1	1	2	2	1	1	2	2	1	2
CO2	1	3	1	2	1	1	2	3	3	1	1	1	3	1	3
CO3	3	1	2	2	1	1	2	1	1	2	1	3	1	1	1
CO4	2	2	1	3	1	1	1	2	2	1	1	2	2	1	2
CO5	1	1	1	1	3	3	1							1	
	COS       1       1       1       3       3       1       1       1       2       1       1       3       1         CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)													I	

Car	Programme Specific Outcome (POs)										
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	2	2	3	2	1						
PSO2	1	1	2	3	2						
PSO3	2	2	1	1	1						

Course Assessment Methods					
Direct					
1. Continuous Assessment Test I, II & Model					
2. Assignment					
3. End Semester Examinations					
Indirect					
1. Course End Delivery					

Content of the Syllabus							
	Non- Electrical ExperimentsPeriods	75					
Unit - I	<ul> <li>i. Phase rule studies <ul> <li>a) Two component systems-Simple Eutectic formation</li> <li>b) Phase diagram of a two-component system forming compound (with melting point).</li> <li>c) Phase diagram of a three component liquid system (with one partially n (Toluene-Water- Acetic acid).</li> <li>ii. Heat of solution of benzoic acid in water.</li> <li>iii. Verification of Freundlich adsorption isotherm (Adsorption of oxalic acid Charcoal).</li> <li>iv. Comparison of strengths of three acids from kinetic study (Iodination of v. Determination of E_a and A (for the hydrolysis of ethyl acetate temperatures).</li> <li>vi. Estimation of KI by partition method.</li> </ul> </li> </ul>	niscible pair) d on acetone). at different					
	Total Periods	75					

Text	Text Books and References							
1	A .O. Thomas, Practical Chemistry, Scientific Book Centre, Cannanore (2003).							
2	V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995).							
1	B Viswanathan, P.S. Raghavan, Practical Physical Chemistry, Viva Books Private Limited, (2005).							
E-Re	ferences							
1	http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Material Science							
2	http://www.cffet.net/sia-e/2_Pot_titr.pdf							

HONEN ENPONERNEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.											
Programme	M.Sc	Programme Code	PCH Regulations 2020-20									
Department	CI	nemistry	Semester 4									
Course Code	Со	irse Name		Periods per Week		Credit	Ma	ximum ]	ım Marks			
		L	Т	Р	С	CA	ESE	Total				
20P4PR01	PROJECT			5		04	40	60	100			
Course Objectives	<ol> <li>To inculcate the habit of literature survey among the students.</li> <li>To offer skill based knowledge to the students.</li> <li>To facilitate the students towards basic research and development.</li> </ol>											
POs		PROGRAMME OUTCOME										
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.											
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicate with others using appropriate media confidently share ones views and express herself /himself.											
PO 3	claims beliefs on th	y analytic thought to a b basis of empirical evide	nce id	entify	v rele	vant assumption	ns or implic	ations	_			
PO 4		blate from what one has letters rather than replicate				_						
PO 5	-	e the reliability and rele s analyse and synthesise d				-	-					
PO 6		and capability for asking to recognise cause and eff			-				-			
PO 7		ectively and respectfully up and act together as a g					-					
PO 8		interpret and draw conclu l experiences from an ope			-	•		d critical	ly evaluate			
PO 9	Critical sensibility	to lived experiences with	self aw	aren	ess a	nd reflexivity of	f both self a	nd societ	y.			
PO 10		CT in a variety of learning information sources and u							e and use a			
PO 11	Ability to work independently, identify appropriate resources required for a project and manage a project through to completion.											
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective. Ability to embrace moral ethical values in conducting one's life formulate a position argument about an											
PO 13	ethical issue from a	nultiple perspectives and	use eth	ical p	pract	ices in all work.						
PO 14	inspiring vision bu	pping out the tasks of a lding a team who can help	p achie	ve th	e vis	ion motivating.	-		-			
PO 15		nowledge and skills inclu s throughout life through			ng ho	ow to learn that a	are necessar	ry for par	ticipating			

## QP CODE-20P3CHC06 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

#### **DEPARTMENT OF CHEMISTRY**

#### MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. CHEMISTRY	Natural Products, Pericyclic reactions and Retro synthesis	III

Time: 3 Hrs.

Max.Marks : 75

1	Zing	iberene is example for	<b>K</b> 1	CO-1		
	Α	Mono terpenes	В	Sesqui terpenes		
	C	Di terpenes	D	Tri terpenes		
2	Whi	ch one of the following is an exa	mpl	e of bicyclic mono terpenes?	K2	CO-1
	Α	α-Pinene	В	Meroquinine		
	C	Citral	С	None of these		
3	Whi	ch of the following is animal ste	Cholesterol is compound	K2	CO-1	
	A	Mycosterol	В	Stigmasterol		
	C	Cholesterol	D	None of these		
4	Hov	w many angular methyl group pr	K2	CO-1		
	Α	2	В	3		
	С	1	D	4		
5	Qui	nine on oxidation with chromic a	K2	CO-2		
	Α	Lutidine	В	Conine		
	C	Formic acid	D	Papaverine		
6	Whi	ch of the following alkaloid havi	ng I	soquinoline group?	K1	CO-2
	Α	Quinine	В	Conine		
•	C	Nicotine	D	Papaverine		
7	Dihy	ydro flavone is otherwise called_	<u>.</u>		K1	CO-2

	Α	Flavanoid	В	Isoflavone		
	С	Flavanone	D	Chalcone		
8	Flav	onoids is a powerful			K1	CO-2
	A	Antioxidant agent	В	Antibiotic agent		
	C	Chromones	D	Flavones		
9	The	fundamental nucleus in anthoc	yanin	es is	K1	CO-3
	Α	Fluoroglucinol	В	Benzopyrylium chloride		
	С	Phenolic acid	D	None of the above		
10	Whi	ch one of the following is purir	ne bas	es?	K2	CO-3
	Α	Adenine and Thymine	В	Thymine and Cytosine		
	С	Cytosine and Guanine	D	Adenine and Guanine		
11	Whi	ch of the following vitamins is	also l	known as cobalamin?	<b>K</b> 1	CO-3
	Α	Vitamin B ₄	В	Vitamin B ₂		
	С	Vitamin B ₆	D	Vitamin B ₁₂		
12	Whi	ch of the following is essential	for th	e development of red blood cell?	<b>K</b> 1	CO-3
	Α	Vitamin A	В	Vitamin C		
	C	Vitamin B ₁₂	D	Vitamin D		
13	The	e electrocyclic reaction for grou	nd sta	ate of haxatrienes rotatory	K3	CO-4
	Α	Con	В	Dis		
	С	Con or Dis	D	Cannot be predicted		
14	The	product of following reaction i	S	.4	<b>K</b> 1	CO-4
	A	$\bigcirc$	В			
	С		D			
15	:	-		onds to a component are formed on	K3	CO-4
		same face, the process is termed	······••	A		
	A	Suprafacial	B	Antarafacial		
	C	Supra-suprafacial	D	Antara-antarafacial		
16	The	$H_{CH_2}$ $\rightarrow$ $CH_2$ above sigmatropic reaction is e	он ₂ examp	ble of	К2	CO-4

			· ·			
	A	[1,4]	В	[1,4]		
	С	[1,5]	D	[1,5]		
17	The	following species is best known	as	-СНО	K1	CO-5
	Α	a1 species	В	d1 umpolung		
	C	d2 species	D	a2 species		
18	Whie	ch of the following statements be	est d	escribes a synthon?	<b>K</b> 1	CO-5
	A	A synthetic reagent used in a	В	A key intermediate in a reaction		
		reaction		sequence		
	С	A transition state involved in	D	A hypothetical structure that		
		a reaction mechanism		would result in a given reaction if		
10				it existed	774	
19	Whie	ch of the following synthons is a	n ex	ample of Umpulong ?	K1	CO-5
		Î	0			
	1		0 СН ₂	Ө сн₂сн₃		
	ų ų			HO HO		
		A B		C D		
	A	Structure A	В	Structure B		
	C	Structure C	D	Structure D		
20	Whie	ch of the following statements be	est d	escribes a disconnection in	K3	CO-5
	1	synthesis?				
	Α	A disconnection involves a	B	A disconnection involves		
		theoretical disconnection of a		identifying stages where a bond is		
		bond in a target structure in		split in the corresponding		
		order to identify simpler		synthesis		
		structures that could be				
		linked through the formation				
	~	of that bond	Б	A 11 / 1 /1 /1		
	C	A disconnection identifies	D	A disconnection describes the		
		retrosynthetic stages which would not be feasible in the		reaction conditions required to split a target structure into simpler		
		corresponding synthesis		molecules.		
			ctior	i		
		Answer All que				
21	A	Describe the following synthes			K2	CO-1
		1) Papaverine 2) Zing	jiber	ene		
			(	DR		
	В	Explain the structural elucidat	ion c	of α - pinene.	K1	CO-1
22	A	What are alkaloids? Explain it	s cla	ssification in brief.	K2	CO-2
			(	DR		

	В	Explain about the Kostaneck synthesis of flavones	K3	CO-2
23	Α	Describe the synthesis of anthocyanin in detail.	K3	CO-3
		OR		
	В	Describe the structural elucidation of vitamin B12 in brief.	K1	CO-3
24	Α	Write a detailed note on cycloaddition	K2	CO-4
		OR		
	В	Explain the Claisen rearrangement with mechanism	K2	CO-4
25	Α	Explain synthons with their synthetic equivalent.	K1	CO-5
		OR		
	В	Describe disconnection approach.	K2	CO-5
	<b>i</b>	Section C		
		Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain the structural elucidation of cholesterol.	K4	CO-1
27		What are alkaloids? Describe the structural elucidation of morphine in detail.	К3	CO-2
28		Explain the structure and biological applications of anthocyanins in detail	К3	CO-3
29		Explain the FMO method for analyzing an electrocyclic reactions with an example.	K3	CO-4
30		Explain umpolung in carbonyls and amino functional group	K4	CO-5

#### QP CODE-20P3CHC07 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (Autonomous) DEPARTMENT OF CHEMISTRY MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. CHEMISTRY	Organometallic, Solid state, Spectroscopy and Bio-	III
	inorganic Chemistry	

Time: 3 Hrs.

Max.Marks : 75

1	Tł	ne complete combustion of dibo	rane	e is	<b>K</b> 1	CO-1
	A	endothermi	В	exothermic		
	C	there is no change in energy	D	Depends on the reaction		
2	W	hich of the following compoun	d ex	ists in liquid state?	K2	CO-1
	Α	Diborane	В	Pentaborane		
	C	Decaborane	C	Borane		
3	7(	$i$ )+ B(OCH ₃ ) ₃ $\rightarrow$ NaBH ₄ + 6( $ii$ )	)+ 3(	iii) Name the compounds i, ii, iii?	K2	CO-1
	A	i.sodium hydride ii.sodium iii.methanol	B	i.sodium ii.methanol iii.sodium hydride		
	C	i.sodium ii.sodium hydride iii.methanol	D	i.sodium hydride ii.methanol iii.sodium		
4	W	Which of the following is not used as raw material for production of boranes?				
	Α	Methanol	B	Sodium borohydride		
	C	Glycol ether	D	Mineral oil		
5	W	hich of the following is the neu	tral	complex which follows the 18- electron rule?	K2	CO-2
	Α	$(\eta^5-C_5H_5)Fe(CO)_2$	В	$(\eta^{5}-C_{5}H_{5})2Mo(CO)_{3}$		
	C	$(\eta^{5}-C_{5}H_{5})_{2}Co$	D	$(\eta^{5}-C_{5}H_{5})2Re(\eta^{6}-C_{6}H_{6})$		
6	H	ow many M — M bonds are pre	esent	t in [Cp Mo(CO ₃ )] ₂ ?	K1	CO-2
	A	1	В	2		
	C	0	D	4		

7	W	hich of the following complex h	as a	a highest oxidation state of metal?	K1	CO-2
	A	$(\eta^{6}-C_{6}H_{6})_{2}Cr$	В	Mn(CO)5Cl		
	C	Na ₂ [Fe(CO) ₄ ]	D	K[Mn(C ₅ ]		
8	W	hich of following pair is not isol	oba	1?	K1	CO-2
	A	Mn(CO) ₅ , CH ₃	В	[Fe(CO) ₄ ], O		
	C	Mn(CO)5, Cl	D	Mn(CO)5, O		
9	Th	e smallest repetitive unit of the crystal	l stri	ucture is known as	<b>K</b> 1	CO-3
	A	atoms	B	Compound		
	C	Unit cell	D	Lattice		
10	Crystals in which the number of the combinations of the symmetric molecule is limited to 32 is known as					
	A	Crystallographic unit cell	В	Crystallographic point groups		
	C	Crystallographic crystals	D	crystallographic atoms.		
11	The point coordinates of the vertex just opposite to the origin are					
	A	000	В	001		
	C	011	D	111		
12	Example for dia-magnetic materials					
	A	super conductors	В	Alkali metals		
	C	Transition metals	D	Ferrites		
13	Which of the following is the principle of Atomic Absorption Spectroscopy?					CO-4
	A	Radiationisabsorbedbynon- excitedatomsinvapourstateandaree xcitedtohigher states	B	Medium absorbs radiation and transmitted radiation is measured		
	C	Colour is measured	D	Colour is simply observed		
14	In Atomic Absorption Spectroscopy, which of the following is the generally used radiation source?					CO-4
	A	Tungsten lamp	В	Xenon mercury arc lamp		
	C	Hydrogen or deuterium discharge lamp	D	Hollow cathode lamp		

15	ES	CA gives sufficient chemical info	rmation	upto a depth about_armstrong in metals.	K3	CO-4
	A	5-20	В	15-40		
	C	40-100	D	100-200		
16		screte electrons cannot be observ the following reasons?	ved in e	lectron ionization of an atom due to which	K2	CO-4
	A	Environmental disturbances	В	Same mass		
	C	Same charge	D	the electron- electron interaction		
17	O	kidation state of Iron in haemo	globin	S	K1	CO-5
	A	+1	В	+2		
	C	+3	D	None		
18	The ligand system present in vitamin B ₁₂					CO-5
	A	porphyrin	В	Corrin		
	C	Phthalocyanin	D	crown ether		
19	Ce	K1	CO-5			
	A	Iron	В	Manganese		
	C	Magnesium	D	Zinc		
20	What are the complications that occur in severe thalassemia disease?					CO-5
	A	Bone deformities	В	Enlarged spleen		
	C	Heart problems	D	All of the above		
				Section B		
21	Δ	Explain the ring compounds		$[uestions (5 \times 5 = 25)]$	K2	CO-1
21	11	Explain the ring compounds	o or sur	OR	112	
	В	Distinguish between isopoly	anions	- heteropolyanions	K1	CO-1
22	A	Describe the synthesis and str	ructure	of metallocene.	K2	CO-2
				OR		
	В	Express your ideas about cha	in carbo	on donar and cyclic carbon donar.	K3	CO-2
23	A	Write notes on space groups and	miller i	ndices.	К3	CO-3
				OR		

	B	Explain magnetic properties of solids.	K1	CO-3
24	Α	Describe about principle of AAS.	K2	CO-4
		OR	K2 K2 K1 K2 K2 K2 K2 K4 K4	
	В	Write notes on Koopman's theorem and chemical shift.	K2	CO-4
25	A	Explain the structure and work function of haemoglobin.	K1	CO-5
		OR		
	В	Describe about chelate therapy.	K2	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain in detail about metal clusters and its types	K4	CO-1
27		Write the hydroformylation of olefins using Cobalt or Rhodium catalysts	K3	CO-2
28		Explain defects in solids.	K3	CO-3
29		Discuss theory and applications of PES.	К3	CO-4
30		Explain the structure and work functions of Chlorophyll.	K4	CO-5

#### VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous) DEPARTMENT OF CHEMISTRY MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc., Chemistry	Quantum Chemistry and Thermodynamics	III
T. 211	N N	1 75

Time: 3 Hrs.

Max. Marks : 75

1	Ou	t of these which one is a	ingu	Answer all questions $(20 \times 1 = 20)$ lar variables	K1	CO-1
	Α	φ, θ	В	θ, r		
	C	φ, r	D	r, R		
2	Jψι	$\psi^* d\tau = 1$ , eigen function	s are	х ;	K1	CO-1
	Α	real	В	normalized		
	C	orthogonal	D	continuous		
3	If a	a particle is in 1D box ar	nd n=	=3, the E is	K1	CO-1
	Α	$h^2/8Ma^2$	В	12h ² /8Ma ²		
	C	9h ² /8Ma ²	D	4h ² /8Ma ²		
4	Ylr	$n(\theta, \varphi)$ are called			K1	CO-1
	Α	quantum number	В	wave function		
	C	reduced mass	D	spherical harmonics		
5	Ē-]	E ₀ is always		K1	CO-2	
	Α	positive	В	zero		
	C	negative	D	constant		
6	Th	e integral S _{ab} is called		K1	CO-2	
	Α	coulomb integral	B	overlap integral		
	C	resonance integral	D	secular integral		
7	Th	e energy level E ₄ of ben	zene	molecule is	K1	CO-2
	Α	2α-β	В	α-2β		
	C	α-β	D	$\alpha+\beta$		
8	<i>F</i> c	lenotes	K1	CO-2		
	Α	linear operator	B	angular operator		

	C	Hermitian operator	D	Fock operator		
9	Fu	Fugacity was introduced by				CO-3
	Α	Duhem	В	Morgan		
	C	Lewis	D	Gibbs		
10	Gi	Gibbs Helmholtz equation of 'T' is				CO-3
	Α	$\overline{H}/\mathrm{T}^2$	В	$-\overline{H}/T^2$		
	C	<i>Η</i> /T	D	- <i>H</i> /T		
11	Th	The quantity $H_o$ - $H$ represents				CO-3
	A	ideal heat of formation	В	ideal heat of fusion		
	C	ideal heat of vaporization	D	ideal heat of evaporation		
12	Cp	$C_p$ in Kirchhoff's law represents				CO-3
	Α	current potential	В	constant		
	С	energy	D	heat capacity		
13	The equation for the evaluation of $\beta$ in M.B. distribution law is				<b>K</b> 1	CO-4
	A	$\beta = 1/kT$	В	$\beta = -1/kT$		
	C	$\beta = kT$	D	$\beta = 2/kT$		
14	Th	e vibrational energy lev	<b>K</b> 1	CO-4		
	A	$E_n = (n + 1/2) hv$	В	$E_n = (n+1) hv$		
	C	$E_n = (n + 2) hv$	D	all the above		
15	What is the rotational partition function of H ₂ at 300 K?				K1	CO-4
	A	1.923	B	1.723		
	C	1.823	D	1.623		
16	A partition function can be used to calculate				K1	CO-4
	A	Free energy	В	Enthalpies		
	C	Entropies	D	none of these		
17	The essential contribution to the thermodynamics of the non-equilibrium systems was brought by				K1	CO-5
	A	Fermi	B	Einstein	6	
	С	Pokrovskii	D	Prigogine		

18	No	Non-equilibrium thermodynamics is concerned with transport processes and			K1	CO-5
	A	energy of chemical reactions	В	rates of chemical reactions		
	С	frequency D state variables				
19		The thermodynamic study of non-equilibrium steady states, in which entropy				CO-5
	pro A	oduction and some flows are       Zero     B       Non-zero				
	л С	one	D D	none of these		
20					K1	CO-5
20		he entropy (S) is a function of the collection of         Intensive variable       B         Massieu potential			NI	0-5
	A		B	Massieu potential extended Massieu function		
	C	extensive quantities	D			
	Section B Answer All questions (5 x 5 = 25 )					
21	Α				K2	CO-1
				OR		
	В	Illustrate eigen value a	nd e	igen function.	K2	CO-1
22	Α	Write a note on self consistent field approximation.			K2	CO-2
		OR				
	В				K2	CO-2
23	Α				K2	CO-3
		OR				
	В	Illustrate Gibbs Duhem equation.			K2	CO-3
24	A	Write a brief note on vibrational partition function.			K2	CO-1
		OR				
	B	Discuss about distribution of distinguishable and non distinguishable particles.			K2	CO-1
25	Α		duct	ion in heat flow and matter flow.	K2	CO-2
		OR				
	В	Describe in detailed ab	out	non-equilibrium stationary states.	K2	CO-2
	Section C Answer ANY THREE Questions (3 x 10 = 30)					
26		·····		application of perturbation method to H atom.	K3	CO-1
27		Explain HMO theory to ethylene system.     K4				CO-2
28		Determine the fugacity of a real gas by equation of state. K5 CO-3				
29		Derive and explain Fermi-Dirac statistics law.				CO-1
30		Verify Onsager recipro	calı	relation using electro kinetic phenomenon.	K4	CO-2
L	. <u>.</u>					

## QP CODE-20P4CH09 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

### **DEPARTMENT OF CHEMISTRY**

#### MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	Physical methods in Chemistry	IV

Time: 3 Hrs.

Max.Marks : 75

1	Pick	out the microwave inactive mol	K1	CO-1		
	A	CO ₂	В	СО		
	С	KCl	D	NO		
2	Rad	io frequency deals with which sp	<b>K</b> 1	CO-1		
	Α	rotational	В	NMR		
	С	vibrational	D	electronic		
3	I _B =I	c≠I _A refers	K1	CO-1		
	Α	linear molecules	В	spherical tops		
	С	symmetric tops	D	asymmetric tops		
4	The	quantity "J" stands for	K1	CO-1		
	A	vibrational quantum number	B	magnetic quantum number		
	С	electronic quantum number	D	rotational quantum number		
5	The	bond length for non-cyclic triate	<b>K</b> 1	CO-2		
	A	2	В	3		
	С	4	D	1		
6	The	energy curve of HCl is	K1	CO-2		
	Α	compound	B	parabola		
	C	spiral	D	simple		
7	In R	aman spectra, symmetric top mo	K1	CO-2		
	A	Q branch lines	В	S branch lines		

· · · · · · · · · · · · · · · · · · ·	C	R branch lines	D	P branch lines		
8	$\epsilon_J =$	$BJ (J+1) - DJ^2 (J+1)^2$ , here D de	<b>K</b> 1	CO-2		
	Α	distortion constant	В	Boltzmann's constant		
	C	rotational constant	D	centrifugal distortion constant		
9	UV	spectroscopy is useful for the de	etecti	on of	K1	CO-3
	Α	functional group	В	extent of conjugation		
	С	geometrical isomers	D	all of these		
10	The	energy difference between $\pi$ and	d π*	is kcal/mole	K1	CO-3
	Α	186	В	176		
	С	156	D	136		
11	An a	auxochrome is one which is		<u>.</u>	<b>K</b> 1	CO-3
	Α	colour enhancing	В	atom with lone pair of electrons		
	С	extending conjugation	D	all of these		
12	The	main advantage of fluorescence	K1	CO-3		
	A	Its sensitivity	В	Its compatibility with separation techniques		
	С	Its compatibility with most analytes	D	None of the above		
13	NMR spectra are observed in region					CO-4
	Α	radio frequency	В	microwave		
	С	UV/Vis	D	X-ray		
14	Whi	ch of the following solvents can	K1	CO-4		
	Α	CCl ₄	В	CS ₂		
	C	CHCl ₃	D	(CCl ₃ ) ₂ C=O		
15	Vici	nal F-F coupling ranges from	(	cps	K1	CO-4
	Α	43-370	В	0-58		
	С	0-39	D	42-80		
16	ESR	t is used to control the state of el	lectro	on spin quits in	K1	CO-4
	A	diamond	В	gallium		
	С	silicon	D	all the above		
17	The	molecular ion peak is usually in	itense	e for	K1	CO-5
	Α	aromatic compounds	В	conjugated olefins		
	С	alcohols	D	neoalkanes		
18	In ca	ase of polynuclear hydrocarbons	s, the	base peak appears	<b>K</b> 1	CO-5

	A	as parent ion peak	В	at 91 due to tropyium ion		
	C	at 77 due to phenylcation	D	None of these		
19	McL peak	K1	CO-5			
	A	aldehydes	В	ketones		
	C	acids	D	all of these		
20	Mos	sbauer Spectroscopy associates v	with	rays	K1	CO-5
	A	radio	В	gamma		
	C	X-ray	D	Cosmic		
			ctior			
21	A	Answer All que Write a brief note on vibration			K2	CO-1
			*	DR	112	
	В	Discuss about distribution of		inguishable and non distinguishable	K2	CO-1
	D	particles.	aist	inguishable and non distinguishable	κ2	0-1
22	A	Justify the entropy production	in h	eat flow and matter flow.	K2	CO-2
	В	Describe in detailed about non	K2	CO-2		
23	A	List out and explain bands in U	JV-Y	Vis spectrum.	K2	CO-3
			(	DR		
	В	Explain the principles and app	licat	ions of fluorescence spectroscopy.	K2	CO-3
24	A	Write a detailed note on absorp	otior	and emission spectrum.	K2	CO-4
			(	DR		
	В	Describe rotational, vibrationa	l and	d electronic spectra.	K2	CO-4
25	A	Draw and explain the energy o	of dia	atomic molecule.	K2	CO-5
			(	DR		
	В	Explain the rotational Raman s	spec	tra of symmetric top molecules.	K2	CO-5
		Section Answer ANY THREE Q	-	tions $(3 \times 10 = 30)$		
26		Draw and derive the energy eq molecules.	uati	on for rigid linear diatomic	К3	CO-1
27		Justify the pure rotational Ram	nan s	spectra of linear molecules.	K4	CO-2
28		Calculate $\lambda_{max}$ for the following (i)	K5	CO-3		

	(iii) (iv)		
29	Define chemical shift. What are the factors affecting chemical shift?	K4	CO-4
30	Draw and explain the components of mass spectrophotometer.	K3	CO-5

## VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN

#### (Autonomous)

PG & RESEARCH DEPARTMENT OF CHEMISTRY

# MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. Chemistry	Environmental Chemistry	IV

Time: 3 Hrs.

Max.Marks : 75

**QP CODE-20P4CHE05** 

#### Section A Answer all questions (20 x 1 = 20)

1	Whic in air	• •	nen e	lectrical discharges pass through oxygen	K1	CO-1	
	Α	Ozone	В	Methane			
	C	CFCs	D	Lead compounds			
2	Tem	perature of outer mesosphere is	.1	4	K1	CO-1	
	A	93℃	В	-93°C			
	C	5°C	D	-5°C			
3		ase caused by eating fish found ng mercury is	in w	vater contaminated with industrial waste	K1	CO-1	
	A	Minamata disease	В	Brights disease			
	C	Hashimotos disease	D	Osteosclerosis			
4	Which of the following play significant role in depletion of ozone layer?					CO-1	
	A	Oxides of nitrogen	В	Oxides of carbon			
	С	Oxides of sulphur	D	None of the above			
5	The	The optimum value in natural water is					
	A	2-4ppm	В	4-7ppm			
	C	4-бррт	D	2-7ppm			
6	By bion	K1	CO-2				
	A	10%	В	30%			
	С	50%	D	75%			
7	Read	K2	CO-2				
	A	KMnO ₄	В	MnO ₄			
	С	Potassium	D	Magnesium			

8	Bio-	chemical oxygen demand (BOD) f	or th	e first 20 days in generally referred to	K1	CO-2
	A	Initial demand	В	First stage demand		
	С	Carbonaceous demand	D	All of these		
9	Plast	tics enter the marine environment	prima	arily by	K2	CO-3
	A	being dumped or lost there	В	debris carried in runoff		
	C	washing out of landfills	D	none of the answers are correct		
10	-	ch of the following is a health iture?	haza	rd often found in kitchen cabinets and	K2	CO-3
	A	Mold	В	Radon		
	C	Asbestos	D	Formaldehyde		
11	Poly	chlorinated biphenyls (PCBs), affe	ecting	2	K1	CO-3
	A	Estrogen metabolism	В	Blood Circulation		
	C	Cell membrane	D	Biodegradable		
12	Poly	chlorinated biphenyls' are by prod	ucts	of plastics, lubricants, rubber and	K2	CO-3
	Α	Paper production	В	Wood production		
	C	Steel production	D	All of above		
13	Wha	K1	CO-4			
	A	High level of nitrates & Eutrophications	B	Salinization		
	C	Desalinization	D	Increase soil Fertility		
14	Cost	K1	CO-4			
	Α	Artificial Predators	В	Natural Predators		
	C	Small Animals	D	Weeds		
15	Wha	t are impacts of over cultivation &	c ove	r grazing?	K2	CO-4
	A	Soil Erosion, Degradation, Desertification	B	Desertification & Salinization		
	C	Soil erosion & Salinization	D	Eutrophication		
16	1	attle, it will	ohen	yl-trichloroethane: C ₁₄ H ₉ O ₅ ) is fed upon	K2	CO-4
	A	get stored in the liver	В	get stored in the fatty tissues of animals		
	C	be excreted out with urine	D	get stored in the muscle fibers		
17	1	simplest and most common methore in a	od uso	ed in the cities is to collect and dump the	K1	CO-5
	A	landfill	В	river		
	C	ocean	D	any of the above		

18	Whi	Which of the below is not an idea behind solid waste management?						
	A	Control of waste generation	B	Storage and collection				
	C	Disposal	D	Stop waste generation				
19	1	Under which rule of Government, guidelines for solid waste management are followed today?						
	Α	Municipal Solid Waste Rules, 2000	В	Municipal Solid Waste Rules, 2016				
	C	Solid Waste Rules, 2000	D	Solid Waste Rules, 2016				
20	Whie wast		om tl	ne decomposition of biodegradable	K2	CO-5		
	A	Ethane	В	Methane				
	C	Propene	D	Ethene				
			ectio uest	on B ions (5x 5 = 25 )				
21	A			potential and chemical equilibria in	K2	CO-1		
				OR				
	B	Write short notes on fundamenta		~	K2	CO-1		
22	A	Discuss the detrimental effects of	K3	CO-2				
				OR				
	B	Explain redox potential in water	chei	nistry.	K3	CO-2		
23	Α	Write a short note on Polychlori	K2	CO-3				
				OR				
	В	Write a note on sources of asbes	tos i	n the environment.	K2	CO-3		
24	A	Write the short notes on Env Herbicides.	viron	mental Implications of Fungicides and	K3	CO-4		
				OR				
	В	Explain the Environmental impl	icatio	ons of Insecticides.	K3	CO-4		
25	Α	Write notes on Municipal waste	into	road making.	K4	CO-5		
				OR				
	В	Explain about Waste manageme	nt.		K4	CO-5		
		Sect Answer ANY THREE						
26		Explain the sample techniques chemistry.	s for	air, water and soil in Environmental	K4	CO-1		
27		What are COD and BOD? Expla	ain w	ith suitable method to calculate.	K4	CO-2		
28		Explain the Environmental Impl	icati	ons of Polymers and Plastics.	K2	CO-3		

29	Explain the Abatement procedures for fungicides and Herbicides pollution.	K4	CO-4
30	Write the notes on the following (i) Utilizing agricultural waste (ii) Wealth	K4	CO-5
	from waste.		

## QP CODE-20P4CHE06 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

### **DEPARTMENT OF CHEMISTRY**

### MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. CHEMISTRY	Corrosion Principles, Protection and Monitoring	IV

Time: 3 Hrs.

Max.Marks : 75

#### Section A Answer all questions (20 x 1 = 20)

1	Wha	What is mechanism of dry corrosion					
	Α	Absorption	B	Electrochemical theory			
	C	Differential solubility	D	B & C			
2	Whi	ich of the following factors affec	t the	corrosion rate of the metal?	K2	CO-1	
	A	Relative surface area of an cathode and anode	В	Nature of the metal oxide layer			
	С	Purity of metal	C	All of these			
3	The cathodic reaction that occurs during corrosion in oxygenated acidic solution is					CO-1	
	Α	2H+ + 2 e -→ H2	В	4 H+ + 4e - O2 -→4 OH-			
	С	$2H2O + 2e \rightarrow 2H2 + 2OH$	D	2H2O + 2e -→2OH-			
4	Which theory explains the oxidation of metals?					CO-1	
	Α	Collision theory	B	Molecular orbital theory			
	С	Wagner theory	D	Mixed potential theory			
5	Whi	Which of the following materials will undergo corrosion					
	Α	Metals	B	Metals and non metals			
	С	Ceramics and plastics	D	All of the above			
6	Whi	ich of the following subjects are	impo	ortant in controlling the corrosion?	<b>K</b> 1	CO-2	
	Α	Thermodynamics	B	Electrochemistry			
	С	Both	D	Materials characterization			

7	Wha	at type of protection is galvanizing	ng?		K1	CO-2
	A	Physical protection	В	Sacrificial protection		
	C	Both of the above	D	None of the above		
8	The	following factors will play vital	role	in corrosion processes	K1	CO-2
	A	Temperature	В	Solute concentration		
	С	Both	D	None		
9	Whi	ch of the following is correct re	gardi	ng polarization ?	K1	CO-3
	A	It is the deviation from equilibrium potential	В	It results from the change in net current flow		
	C	Magnitude in terms of over voltage	D	It is the deviation from equilibrium potential that occurred due to change in current flow and its magnitude is measured in terms of overvoltage		
	Overvoltage (n), volts	at is depicted in the given figure	r	Anodic polarization		
		Current density	σ	Desistance relativetion of		
	٨	Concentration polarization of	В	Resistance polarization of hydrogen-hydrogen io		
	A	-				:
	A C	hydrogen-hydrogen io Activation polarization of hydrogen-hydrogen ion	D	Both activation and concentration polarization of hydrogen-hydrogen		
11	C	hydrogen-hydrogen io Activation polarization of hydrogen-hydrogen ion		Both activation and concentration	K1	CO-3

	C	The temperature of a solution	D	The velocity of a solution		
12	Wha		of o	xidation or rate of reduction during	<b>K</b> 1	CO-3
	÷	ibrium?				
	A	r ₀ =r _R =i0nF	B	$r_0 = r_R = i_0/nF$		
	C	$r_0 = r_R = i_0 n/F$	D	r ₀ =r _R =nF/io		
13	:		poi	nt metals such as Zn,Sn,Pb,Al on	K3	CO-4
	Fe,st A	eel and Cu Hot dipping	В	Anodic coating		
	л С	Cathodic coating	D D	Galvanizing		
14			l	<u> </u>	<b>K</b> 1	CO-4
14		the process of coating of Fe or	•		<b>N</b> I	0-4
	A	Tinning	B	Hot dipping		
	С	Galvanizing	D	None of these		~~ .
15	(	Coating is non toxic in nature	Ŧ		K3	CO-4
	A	Sn	B	Zn		
	С	Fe	D	Cu		
16	Corr	osion can be prevented by			K2	CO-4
	Α	Applying coating that acts as a barrier	B	Materials react		
	С	Forms an oxide layer	D	None of these		
17	The	oxide coating around aluminum			<b>K</b> 1	CO-5
	Α	Protects the metal from further corrosion	B	Iron only will rust		
	C	More reactive metal than iron	D	Iron will not rust		
18	In ga	lvanizingironthe Zinc reacts ins	stead	ofiron and therefore be	K1	CO-5
	Α	Iron will not rust	В	Protect the metal from further		
	C	Corrosion can be prevented	D	corrosion Corroded		
19		re used as corrosion inhibitors of			K1	CO-5
17	al		101	i and steel in aqueous solution s	N1	00-5
	Α	Phosphates	В	Chromates		
	С	Sulphates	D	Bi carbonates		
20	Ident	ify the group which is not used	as ai	nodic inhibitor	K3	CO-5
	Α	Chromates	В	phosphates		
	С	Sulphates	D	Tungstates		
			ction			
		Answer All que	estio	$ns(5 \times 5 = 25)$		

21	Α	Define corrosion. What are the consequences of corrosion ?	K2	CO-1
		OR		
	В	What are the differences between chemical (dry corrosion) and electrochemical (wet corrosion)	K1	CO-1
22	Α	Explain the Thermodynamics theory of corrosion.	K2	CO-2
		OR		
	В	What is meant by polarization ?how it can be measured ?	K3	CO-2
23	A	Explain corrosion weight loss method in detail.	K3	CO-3
		OR		
	В	What is electrochemical impedance spectroscopy.	K1	CO-3
24	A	Discuss the various factors influencing rate of corrosion and their prevention methods.	K2	CO-4
		OR		
	В	Explain the following 1. Hot dipping 2. Metal cladding	K2	CO-4
25	Α	What is vapour phase inhibitors? Give examples.	<b>K</b> 1	CO-5
		OR		
	В	Explain the inhibition of reinforcement of concrete steel in water environment.	K2	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		What do you mean electrochemical corrosion? Explain the cathodic and anodic corrosion mechanism.	K4	CO-1
27		Explain Pourbaix diagram of water, iron and aluminium in detail. What are its limitations?	K3	CO-2
28		Discuss briefly about potentio dynamic and galvano dynamic polarization techniques.	K3	CO-3
29		What do you mean by cathodic protection? Discuss the sacrificial anodic protection and impressed current cathodic protection methods.	K3	CO-4
30		What are corrosion inhibitors? Explain anodic and cathodic inhibitors in details.	K4	CO-5

## QP CODE-20P3CHED01 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous) DEPARTMENT OF CHEMISTRY

## MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester	
M.Sc. PHYSICS	Elective paper: Applied Polymer Chemistry	III	

Time: 3 Hrs.

#### Max.Marks :75

Sec	tion A
Answer all que	stions (10 x 1 = 10)

1	Po	lyethylene is a example for	K1	CO-1		
	A	monomer	В	High polymer		
	C	polymer	D	none		
2	Th	e degree of polymerization of 5	K1	CO-1		
	A	2	В	3		
	C	4	D	5		
3	Th	e linear polymer havemel	ting p	oints	K1	CO-1
	Α	low	В	high		
	C	medium	D	none		
4	In free radical mechanism initiation hemolytic dissociation to yield aof free radical					CO-1
	A	Pair	В	non-pair		
	C	three	D	none		
5	In Zieglar Natta polymerization a vanadium catalyst gives aproduct					CO-2
	A	isotactic	В	syndiotactic		
	C	eutectic	D	none		
6	<b>R-</b> 7	Ficl4 compound used incoor	K2	CO-2		
	Α	mono	В	bimetallic		
	C	Both a and b	D	none		
7	Th	e following one is the example for	K3	CO-2		
	A	PVC	В	PE		

	С	SBR	D	none		
8	-A-	A-A-A-B-B-B-B-A-A-A is th	K2	CO-2		
	Α	block	В	graft		
	С	copolymerisation	D	none		
9	Rea	activity ratio only depends on	the		K2	CO-3
	А	T,P	В	Т,С		
	С	P,C	D	none		
10	The	e dispersity is a measure of het	erogeneity	ofof particles in a mixture	K2	CO-3
	Α	size	В	length		
	С	weight	D	none		
11	Inv	weight average method W1=	E	A	K2	CO-3
	Α	n1M1	В	N1N2		
	С	M1M2	D	none		
12	In l	ight scattering method	is used as a	a source	K4	CO-3
	Α	Mercury arc	В	laser		
	С	a and b	D	none		
13	The	e calendaring machine is a set	<b>K</b> 1	CO-4		
	Α	steel	В	metal		
	С	solid	D	aluminium		
14	In ro	otational casting gelation takes	<b>K</b> 1	CO-4		
	Α	100-150	В	150-200		
	С	200-250	D	300		
15		njection moulding the molten	K2	CO-4		
	Α	1300	В	1400		
	С	1500	D	1600		
16	Blo	w moulding is basically used	in	industry	K2	CO-4
	Α	rubber	В	Plastic		
	С	glass	D	steel		
17	In l	PVC preparation following one	e is used as	a catalyst	K2	CO-5
	Α	mercury chloride	В	metal chloride		
	С	Both a and b	D	none		
18	Pol	vester is prepared by the cond	ensation of	terephthalic acid andglycol	K1	CO-5

	A	methylene	B	ethylene		
	С	propylene	D	acetylene		
19	Sili	cone polymers are prepared by the	hydro	lysis of alkyl substitutedsilane	K2	CO-5
	A	chloro	В	Bromo		
	С	iodo	D	flouro		
20	The	e following one polymer is mainly u	ised in	contact lenses and dental restorations	K3	CO-5
	Α	Polymethyl methacrylate	В	Polyethyl methacrylate		
	С	Both a and b	D	none		
			Sectio			
21	A	Answer All C Explain the mechanism of cationic		$\frac{1}{10000000000000000000000000000000000$	K4	CO-1
				DR		
	В	Explain the following polymers	a) line	-	K3	CO-1
22	A	Give an account of Ziegler Natta		· · ·	K2	CO-2
		88		DR		
	В	Write short notes on cross linked		-	K4	CO-2
23	A	How to determine the molecular v		••	K1	CO-3
				DR		
	В	How will determine the molecular	weig	ht by viscosity method	K4	CO-3
24	A	Write notes on die casting method	1		K3	CO-4
				DR		
	В	Explain the rotational casting met	hod		K2	CO-4
25	A	Explain the following a)polyamic		olyester	<b>K</b> 1	CO-5
			(	DR		
	В	Briefly explain the electrically con	nducti	ng polymers	K1	CO-5
	<u> </u>	See	ction (	С		
26	I	Answer ANY THRE			V2	<u> </u>
26		Explain in detail about free radica			K3	CO-1
27		Briefly discuss the kinetics of cop	•		K1	CO-2
28				er is measured by light scattering method	K3	CO-3
29		Explain the following a) Injectio	n mou	Iding b) Extrusion moulding	K1	CO-4
30		Write short notes on applications	of bio	medical polymers	K2	CO-5

### QP CODE-20P3CHED02 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous) DEPARTMENT OF CHEMISTRY

### MODEL QUESTION PAPER

Programme(s)	Title of the Paper	Semester
M.Sc. PHYSICS	Elective paper: Industrial Chemistry	III

Time: 3 Hrs.

Max.Marks : 75

### Section A Answer all questions (20 x 1 = 20)

1	Which of the following is the correct pairing between the initial reactant and major product of a type of fermentation?					CO-1
	Α	Lactate; glucose	В	Acetate; ethylene glycol		
	C	Ethanol; lactate	D	Glucose; lactate		
2	Wha	at is the primary function of ferr	nenta	tion?	K1	CO-1
	A	Production of ethanol to be used as a fuel source	В	Regeneration of NAD+		
	С	Regeneration of NADH	С	Production of lactic acid to be used as a fuel source		
3	During lactic acid fermentation, what is the final electron acceptor?					CO-1
	Α	Oxygen	В	Ethanol		
	С	Carbon dioxide	D	Pyruvate		
4	The type of fermentation observed in yeasts is					CO-1
	Α	acrylic fermentation	В	lactic acid fermentation		
	C	pyruvic fermentation	D	alcoholic fermentation		
5	Correct melting point of the drug Aspirin is?					CO-2
	A	124°C	В	321°C		
	C	140°C	D	26°C		
6	Which of the following fermentation processes is used in the production of penicillin?					CO-2
	A	Aerobic fermentation followed by anaerobic fermentation	B	Anaerobic fermentation		
	C	(c) Aerobic fermentation	D	Anaerobic fermentation followed by aerobic fermentation		

7	Whie	ch of the following species is us	ed fo	or producing streptomycin?	K1	CO-2
	A	Vitamin A	В	Vitamin D		
	C	Vitamin E	D	Vitamin K		
8		ch of the following events occur cillium chrysogenum?	rs du	ring the third phase of growth of	K1	CO-2
	A	Autolysis of the medium starts	B	Slight rise in pH due to liberation of ammonia		
	C	The concentration of antibiotic increases in the medium	D	All of the above		
9	Phot	osynthetic pigments absorb			K4	CO-3
	A	UV radiation	B	IR radiation		
	C	Visible radiation	D	Gama radiation		
10	Whie	ch one among the following is u	ised a	as red pigment	K1	CO-3
	A	Titanium dioxide	B	Iron oxide		
	C	Zinc oxide	D	Carbon black		
11	Pign	nent incorporation			K4	CO-3
	A	Increases hardness of the film	B	Reduces gloss		
	C	Improve masking ability	D	All of the above		
12		oxide is a metal oxide. Which or re of zinc oxide:	of the	e following term best describes the	K1	CO-3
	A	an acidic oxide	В	a neutral oxide		
	C	an amphoteric oxide	D	a basic oxide		
13	Adh	esives were			K3	CO-4
	A	Can't be used in the form of pressure sensitive tapes	B	Can't join two dissimilar metals		
	C	Cure instantaneously after application on a surface	D	None of these		
14	Enar	nel can act in a sense like a			K4	CO-4
•	A	A. Permeable membrane	В	Impermeable membrane		
	C	Semipermeable membrane	D	Infrapermeable membrane		
15	A fif	ty percent straight dynamite con	ntain	S	K4	CO-4
	A	5 percent of nitroglycerin	В	5 percent of trinitrotoluene (TNT)		
	С	50 percent of trinitrotoluene (TNT)	D	50 percent of nitroglycerin		
16	In re	cent years, dynamite has been re	eplac	ced commercially by	K3	CO-4
	A	PETN	В	Nitroglycerin		

	C	ТАТР	D	Ammonium nitrate-based explosive		
17	Mel	ing point of fat is ar	nd m	elting point of oil is	K2	CO-5
	Α	Higher, higher	B	Lower, lower		
	С	Lower, higher	D	Higher, lower		
18	Whi	ch of the following is an example	le of	fats?	<b>K</b> 1	CO-5
	A	Glyceryltrioleate	В	Vegetable ghee		
	С	Coconut oil	D	Groundnut oil		
19	Sele	ct the incorrect statement from t	he fo	ollowing option.	K1	CO-5
	A	Oils are saturated triglyceride	B	Examples of oils are glyceryltrioleate, coconut oil, olive oil, etc		
	C	Oils are liquid at room temperature	D	Oils have lower melting points		
20	Hyd	rogenolysis is a reaction which I	leads	s to the reduction products of	K1	CO-5
	Α	Aldehyde	В	Ketone		
	С	Alcohol	D	Ester		
			ctio			
21	A			$\frac{1}{10000000000000000000000000000000000$	K1	CO-1
21	Α	of microorganisms in the ferm			K1	0-1
			(	OR		
	В	What are the health benefits a	nd h	armful effects of beer and wine?	K1	CO-1
22	Α	What are the different uses for	r asp	irin?	<b>K</b> 1	CO-2
			(	OR		
	В	Explain then properties and uses	of m	ethylene blue.	K6	CO-2
23	Α	Write the Synthesis and uses of a	chron	nium oxide	K1	CO-3
			(	OR		
	В	Describe the preparation and	char	acteristics of cobalt blue	K5	CO-3
24	Α	Write a classification of adhesiv	ves?		K1	CO-4
			(	OR		
	В	Explain the properties and use	es of	Nitro cellulose	K6	CO-4
25	Α	State Saponification value?			K3	CO-5
				OR		
	В	Write a properties and uses of	cast	or oil.	K1	CO-5

	Section C Answer ANY THREE Questions (3 x 10 = 30)				
26	Explain the preparation of ethyl alcohol from molasses.	K6	CO-1		
27	Discuss the preparation, properties and uses of paracetamol & chlormycetin.	K5	CO-2		
28	Explain the synthesis, properties and applications of Zinc oxide.	K6	CO-3		
29	Explain the preparation and uses of Gun Powder and Dynamite.	K6	CO-4		
30	Describe the Manufacture of cotton seed oil and soybean oil.	K5	CO-5		